Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This work focuses on adaptive Broadband Radio Access Network (BRAN) channel identification and on downlink Multi-Carrier Code Division Multiple Access (MCCDMA) equalization. We use the normalized BRAN C channel model for 4G mobile communications, distinguishing between indoor and outdoor scenarios. On the one hand, BRAN C channel parameters are identified using the Least Mean p-Power (LMP) algorithm. On the other, we consider these coefficients in the context of adaptive equalization. We provide an overview and a mathematic formulation of MC-CDMA systems. According to these fundamental concepts, the equalizer technique is investigated analytically to compensate for channel distortion in terms of the bit error rate (BER). The numerical simulation results, for various signal-to-noise ratios and different p threshold, show that the presented algorithm is able to simulate the BRAN C channel measured with different accuracy levels. Furthermore, as far as the adaptive equalization problem is concerned, the results obtained using the zero-forcing equalizer demonstrate that the algorithm is adequate for some particular cases of threshold p.
EN
The resolution of a Direction of Arrival (DOA) estimation algorithm is determined based on its capability to resolve two closely spaced signals. In this paper, authors present and discuss the minimum number of array elements needed for the resolution of nearby sources in several DOA estimation methods. In the real world, the informative signals are corrupted by Additive White Gaussian Noise (AWGN). Thus, a higher signal-to-noise ratio (SNR) offers a better resolution. Therefore, we show the performance of each method by applying the algorithms in different noise level environments.
3
EN
In this paper, the localization of wideband source with an algorithm to track a moving source is investigated. To locate the wideband source, the estimation of two directions of arrival (DOA) of this source from two different arrays of sensors is used, and then, a recursive algorithm is applied to predict the moving source’s position. The DOA is estimated by coherent subspace methods, which use the focusing operators. Practical methods of the estimation of the coherent signal subspace are given and compared. Once the initial position is estimated, an algorithm of tracking the moving source is presented to predict its trajectory.
EN
Source localization problem consists of an ensemble of techniques that are used to obtain spatial information of present radiation in given medium of propagation, with a constraint of the antenna geometry and the characteristics of radiating sources. This condition gives multitude of cases to study, hence several methods were proposed in the literature. In this paper, a new algorithm for estimating the Direction of Arrival (DoA) of narrowband and far eld punctual sources is introduced. By exploiting the spectrum of covariance matrix of received data, the Lorentzian function on spectral matrix to lter the eigenvalues is applied. This ltering process eliminates the eigenvalues belonging to signal subspace. Parameters of Lorentz function are adjusted using rst and second statistics of eigenvalues. The algorithm requires the knowledge of minimum eigenvalue and is performing when the dimension of antenna is relatively large which is conrmed by several Monte Carlo simulations.
EN
In this paper a comparative study, restricted to one-dimensional stationary case, between several Direction of Arrival (DOA) estimation algorithms of narrowband signals is presented. The informative signals are corrupted by an Additive White Gaussian Noise (AWGN), to show the performance of each method by applying directly the algorithms without pre-processing techniques such as forward-backward averaging or spatial smoothing.
EN
In this paper, a comparative study between a blind algorithm, based on higher order cumulants, and adaptive algorithms, i.e. Recursive Least Squares (RLS) and Least Mean Squares (LMS) for MultiCarrier Code Division Multiple Access (MC-CDMA) systems equalization is presented. Two practical frequency-selective fading channels, called Broadband Radio Access Network (BRAN A, BRAN B) normalized for MC-CDMA systems are considered. In the part of MC-CDMA equalization, the Zero Forcing (ZF) and the Minimum Mean Square Error (MMSE) equalizer techniques were used. The simulation results in noisy environment and for different signal to noise ratio (SNR) demonstrate that the blind algorithm gives approximately the same results obtained by adaptive algorithms. However, the proposed algorithm presents the advantage to estimate the impulse response of these channels blindly except that the input excitation is non-Gaussian, with the low calculation cost, compared with the adaptive algorithms exploiting the information of input and output for the impulse response channel estimation.
EN
This paper describes two blind algorithms for multicarrier code division multiple access (MC-CDMA) system equalization. In order to identify, blindly, the impulse response of two practical selective frequency fading channels called broadband radio access network (BRAN A and BRAN E) normalized for MC-CDMA systems, we have used higher order cumulants (HOC) to build our algorithms. For that, we have focussed on the experimental channels to develop our blind algorithms able to simulate the measured data with high accuracy. The simulation results in noisy environment and for different signal to noise ratio (SNR) demonstrate that the proposed algorithms are able to estimate the impulse response of these channels blindly (i.e., without any information about the input), except that the input excitation is i.i.d. (identically and independent distributed) and non-Gaussian. In the part of MC-CDMA, we use the zero forcing and the minimum mean square error equalizers to perform our algorithms. The simulation results demonstrate the effectiveness of the proposed algorithms.
EN
A scheme of chaotic spreading sequence for multicarrier code division multiple access system (MC-CDMA) iproposed to estimate the transmission channel. This systespreads spectrum and identifies the channel, simultaneously. The proposed scheme uses a chaotic sequence generated by a logistic map as a training signal and estimate channel parameters according to dynamics of the chaotic sequence. Encoding data by chaotic sequences is first built and then the orthogonal codes are used to spread the encrypted data for multiusers scheme. At the reception, first the channel parameters are identified using a training chaotic sequence in order to equalize the received data, and then the encrypted information is decoded for the desired user. The studies reveal that the proposed system (chaos plus orthogonal codes) significantly outperforms the Walsh-Hadamard code spreading in MC-CDMA system. The performance of the system is considered in the multiuser case by means of simulation. The simulation result shows that the proposed chaotic code spreading approach for channel identification achieves significant improvement in the channel identification, comparing to using others training sequence or the least square method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.