Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
It is a hot topic to investigate resource allocation in fog computing. However, currently resource allocation in fog computing mostly supports only fixed resources, that is, the resource requirements of users are satisfied with a fixed amount of resources during the usage time, which may result in low utility of resource providers and even cause a waste of resources. Therefore, we establish an integer programming model for the time-varying multidimensional resource allocation problem in fog computing to maximize the utility of the fog resource pool. We also design a heuristic algorithm to approximate the solution of the model. We apply a dominant-resource-based strategy for resource allocation to improve resource utilization as well as critical value theory for resource pricing to enhance the utility of the fog resource pool. We also prove that the algorithm satisfies truthful and individual rationality. Finally, we give some numerical examples to demonstrate the performance of the algorithm. Compared with existing studies, our approach can improve resource utilization and maximize the utility of the fog resource pool.
EN
This paper considers reasonable bandwidth allocation for multiclass services in peer-to-peer (P2P) networks, measures the satisfaction of each peer as a customer by a utility function when acquiring one service, and develops an optimization model for bandwidth allocation with the objective of utility maximization. Elastic services with concave utilities are first considered and the exact expression of optimal bandwidth allocation for each peer is deduced. In order to obtain an optimum in distributed P2P networks, we develop a gradient-based bandwidth allocation scheme and illustrate the performance with numerical examples. Then we investigate bandwidth allocation for inelastic services with sigmoidal utilities, which is a nonconvex optimization problem. In order to solve it, we analyze provider capacity provisioning for bandwidth allocation of inelastic services and modify the update rule for prices that service customers should pay. Numerical examples are finally given to illustrate that the improved scheme can also efficiently converge to the global optimum.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.