Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The influence of slip parameter, viscous dissipation, and Joule heating parameter on MHD boundary layer nanofluid flow over a permeable wedge-shaped surface was analysed. The PDEs and the associated boundary conditions were transformed to a set of non-similar ODEs and the obtained system of equations was solved numerically with the help of the spectral quasi-linearization method (SQLM) by applying suitable software. This method helps to identify the accuracy and convergence of the present problem. The current numerical results were compared with previously published work and are found to be similar. The fluid velocity, fluid temperature, and nanoparticle concentration within the boundary layer region for various values of the parameters such as the slip effect, magnetic strength, Prandtl number, Lewis number, stretching ratio, viscous dissipation, suction, Brownian motion, Joule heating, heat generation, and thermophoresis are studied. It is observed that the Brownian motion, Joule heating, viscous dissipation, and thermophoresis lead to decreases in the heat and mass transfer rate. The skin friction coefficient enhances with slip, magnetic, permeability, and suction parameters, but reduces with the Brownian motion, wedge angle, and stretching ratio parameters whereas there is no effect of mixed convection, thermophoresis, heat generation parameters, the Prandtl and Eckert number.
EN
This experimental study investigated the effects of a conventional cutting fluid during drilling cylindrical holes on workpiece materials made of the AISI 1040 steel. Drilling responses were compared between dry and wet (in presence of the cutting fluid) cutting conditions with respect to drilling force, roundness deviation and taper of the hole, and chip morphology. High production machining and drilling with high cutting speed, feed, and depth of cut were found to be inherently associated with the generation of a large amount of heat and high cutting temperature. In a dry condition such high cutting temperature not only reduces dimensional accuracy and tool life but also impairs the roundness deviation and taper of the hole. The use of a conventional cutting fluid, in such a situation, was very effective to reduce the cutting temperature. In a dry cutting condition, numerous tool-wears were found on the drill bits. Drilling in such a dry condition seriously affects roundness of the hole, and chip shape and color. Contrastingly, use of a traditional cutting fluid reduced temperature as well as improved roundness and taper of the hole. It also acted as a lubricate at the tool tip–work surface interface. Overall, the conventional cutting fluid enhanced the quality of the machine work and potentially can increase machine life of drill bits.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.