Eutectoid growth, as the important reaction mechanism of the carbon steel heat treatment, is the basis to control the microstructure and performance. At present, most studies have focused on lamellar growth, and did not consider the nucleation process. Mainly due to the nucleation theory is inconclusive, a lot of research can support their own theory in a certain range. Based on the existing nucleation theory, this paper proposes a cooperative nucleation model to simulate the nucleation process of eutectoid growth. In order to ensure that the nucleation process is more suitable to the theoretical results, different correction methods were used to amend the model respectively. The results of numerical simulation show that when the model is unmodified, the lateral growth of single phase is faster than that of longitudinal growth, so the morphology is oval. Then, the effects of diffusion correction, mobility correction and ledges nucleation mechanism correction on the morphology of nucleation and the nucleation rate were studied respectively. It was found that the introduction of boundary diffusion and the nucleation mechanism of the ledges could lead to a more realistic pearlite.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A capillary pumped loop (CPL) is a two-phase thermal control device applied in cooling electronic devices. A two-dimensional conjugate numerical model of a miniature flat-plate capillary evaporator is presented in order to describe liquid and vapor flow, heat transfer and phase change in the porous wick structure, liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and the metallic wall. The entire evaporator is solved with the SIMPLE algorithm as a conjugate problem. The shape and location of the vapor-liquid interface inside the wick are calculated, and a side wall effect heat transfer limit is introduced to estimate the evaporator's heat transport capability. The influence of various wall materials on the evaporator's performance is discussed in detail. The results suggest that an evaporator with a combined wall is capable of dissipating high heat flux and stabilizing the temperature of electronic devices at a moderate temperature level.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.