Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A robot manipulator is a multi-articulated mechanical system, in which each articulation is driven individually by an electric actuator. As the most used robot in industrial application, this system needs an efficient control strategy such as the classical PID control law by means of which each articulation is controlled independently. This kind of control presents a lot of inconvenient, such as error of each articulation isn’t taken account into others. In this work we present a Multi Input Multi Output (MIMO) PID controller to ensure the articulation robot control strategy, the results obtained present satisfactory and shows clearly the efficiency of the present PID-MIMO controller.
EN
The main problem of electrical distribution systems is the reactive power flow. It causes reduction of active power transmission, diminishes power losses, and augments the drop voltage. In this research we described an efficiency approach FLC-HSO to solve the optimal power flow (OPF) combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC) algorithm for nodal detection and harmony search optimization (HSO) algorithm for optimal seizing capacitor of OPF combinatorial problem control variables. HSO method is more proficient in improving combinatory problem. The proposed approach has been examined and tested on the standard IEEE 57-bus test system with different objectives that reflect cost function minimization, voltage profile improvement, and voltage stability enhancement. The proposed approach results have been compared to those that reported in the literature recently. The results are promising and show the effectiveness and robustness of the proposed approach.
EN
This paper presents a real induction vehicle motor speed estimation technique, based on the fuzzy logic inference system knowledge for electric vehicle safety based on differential electronics as essential element for two wheeled electric vehicle driving which utilize the two back separately induction motors for motion. The aim object of the fuzzy logic controller is to give more and more safety for the electric propulsion system safety during motion against road topology. Our electric vehicle fuzzy inference system control’s simulated in Matlab SIMULINK environment, the results obtained present the efficiency and the robustness of the proposed control with good performances compared with the traditional PI speed control, the FLC induction traction machine presents not only good steady characteristic, but with no overshoot too. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.