Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Celiac Disease (CD) is a common ailment that affects approximately 1% of the world population. Automated CD detection can help experts during the diagnosis of this condition at an early stage and bring significant benefits to both patients and healthcare providers. For this purpose, scientists have created automatic and semi-automatic CD diagnostic support systems. In this study, we performed information extraction methods that were found useful for efforts to differentiate CD versus non-CD. To focus the review process, only methods for endoscopy, video capsule endoscopy (VCE) and biopsy image analyses were considered. As described herein, we have learned that statistical and non-linear methods are most important for information extraction. These information extraction tools might benefit clinical workflows by reducing intra- and inter-observer variability. However, bias, introduced by resolving design choices during the creation of diagnostic support systems, may limit the general validity of the performance results, impacting the transferability of study outcomes. Therefore, having am overview of information extraction tools. Together with their general and specific limitations, might be assistive in improving the information extraction process. We hope our review results will provide a foundation for the design of next-generation statistical and nonlinear methods that can be used in CD detection systems. We have also compared various review articles and discussed recommendations to improve CD diagnosis. From this review, it is evident that CD diagnosis is slowly moving away from conventional techniques towards advanced deep learning techniques.
EN
Widespread proliferation of interconnected healthcare equipment, accompanying software, operating systems, and networks in the Internet of Medical Things (IoMT) raises the risk of security compromise as the bulk of IoMT devices are not built to withstand internet attacks. In this work, we have developed a cyber-attack and anomaly detection model based on recursive feature elimination (RFE) and multilayer perceptron (MLP). The RFE approach selected optimal features using logistic regression (LR) and extreme gradient boosting regression (XGBRegressor) kernel functions. MLP parameters were adjusted by using a hyperparameter optimization and 10-fold cross-validation approach was performed for performance evaluations. The developed model was performed on various IoMT cybersecurity datasets, and attained the best accuracy rates of 99.99%, 99.94%, 98.12%, and 96.2%, using Edith Cowan University- Internet of Health Things (ECU-IoHT), Intensive Care Unit (ICU Dataset), Telemetry data, Operating systems’ data, and Network data from the testbed IoT/IIoT network (TON-IoT), and Washington University in St. Louis enhanced healthcare monitoring system (WUSTL-EHMS) datasets, respectively. The proposed method has the ability to counter cyber attacks in healthcare applications.
EN
Sleep is a physiological activity and human body restores itself from various diseases during sleep. It is necessary to get sufficient amount of sleep to have sound physiological and mental health. Nowadays, due to our present hectic lifestyle, the amount of sound sleep is reduced. It is very difficult to decipher the various stages of sleep manually. Hence, an automated systemmay be useful to detect the different stages of sleep. This paper presents a novel method for the classification of sleep stages based on RR-time series and electroencephalogram (EEG) signal. The method uses iterative filtering (IF) based multiresolution analysis approach for the decomposition of RR-time series into intrinsic mode functions (IMFs). The delta (d), theta (u), alpha (a), beta (b) and gamma (g) waves are evaluated from EEG signal using band-pass filtering. The recurrence quantification analysis (RQA) and dispersion entropy (DE) based features are evaluated from the IMFs of RR-time series. The dispersion entropy and the variance features are evaluated from the different bands of EEG signal. The RR-time series features and the EEG features coupled with the deep neural network (DNN) are used for the classification of sleep stages. The simulation results demonstrate that our proposed method has achieved an average accuracy of 85.51%, 94.03% and 95.71% for the classification of 'sleep vs wake', 'light sleep vs deep sleep' and 'rapid eye movement (REM) vs non-rapid eye movement (NREM)' sleep stages.
EN
Atrial fibrillation (AF) is the most common type of sustained arrhythmia. The electrocardiogram (ECG) signals are widely used to diagnose the AF. Automated diagnosis of AF can aid the clinicians to make a more accurate diagnosis. Hence, in this work, we have proposed a decision support system for AF using a novel nonlinear approach based on flexible analytic wavelet transform (FAWT). First, we have extracted 1000 ECG samples from the long duration ECG signals. Then, log energy entropy (LEE), and permutation entropy (PEn) are computed from the sub-band signals obtained using FAWT. The LEE and PEn features are extracted from different frequency bands of FAWT.We have found that LEE features showed better classification results as compared to PEn. The LEE features obtained maximum accuracy, sensitivity, and specificity of 96.84%, 95.8%, and 97.6% respectively with random forest (RF) classifier. Our system can be deployed in hospitals to assist cardiac physicians in their diagnosis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.