Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A boundary integral equation for the 2d external potential flow
EN
Based on the recently discovered second kind Fredholm integral equation for the exterior Riemann problem, a boundary integral equation is developed in this paper for the two-dimensional, irrotational, incompressible fluid flow around an airfoil without a cusped trailing edge. The solution of the integral equation contains one arbitrary real constant, which may be determined by imposing the Kutta-Joukowski condition. Comparisons between numerical and analytical values of the pressure coefficient on the surface of the NACA 0009 and NACA 0012 airfoils with zero angle of attack show a very good agreement.
EN
A numerical solution for the effect of a small but fluctuating gravitational field, characteristic of g-jitter, on the free convection boundary layer flow near the forward stagnation point of a two-dimensional symmetric body resulting from a step change in its surface temperature and immersed in a micropolar fluid is presented in this paper. Both the cases when the spin gradient on the wall is zero and non-zero are considered. The transformed non-similar boundary layer equations are solved numerically by a very efficient implicit finite-difference scheme known as the Keller-box method to investigate the effects on the skin friction and on the rate of heat transfer of variations in the forcing amplitude, a, forcing frequency, 'omega', and micropolar parameter, K. The results are given for a value of the Prandt number Pr=0.7. It has been found that these parameters affect considerably the considered flow characteristics. A comparison with earlier results for a Newtonian fluid (K=0) shows a good agreement.
EN
Numerical solutions for the steady laminar free convection boundary layer flow over a horizontal circular cylinder subjected to a constant surface heat flux in a micropolar fluid are presented in this paper. The governing boundary layer equations are first transformed into a non-dimensional form. These equations are then transformed into a set of nonsimilar boundary layers, which are solved numerically using a very efficient implicit finite-difference method known as the Keller-box scheme. The obtained solution for the material parameter K=0 (Newtonian fluid) and different values of the Prandtl number Pr are used to compare the accuracy of the present method with that known from the open literature. The results are shown to compare very well. The effects of various values of K on the velocity and temperature fields as well as on the wall temperature and local skin friction coefficient are presented through graphs and tables for Pr=0.72 and 1.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.