Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We report the discovery of a cold Super-Earth planet (mp=4.4±0.5 M⊕) orbiting a low-mass (M=0.23±0.03 M⊙) M dwarf at projected separation a⊥=1.18±0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, DL=0.86±0.09 kpc. Indeed, it was the large lens-source relative parallax πrel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, "microlens parallax" πE∝(πrel/M)1/2 that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q<1×10-4. We apply a new planet-detection sensitivity method, which is a variant of "V/Vmax", to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d lnq ∝ qp, with p=1.05+0.78 -0.68, which confirms the "turnover" in the mass function found by Suzuki et al. relative to the power law of opposite sign n=-0.93±0.13 at higher mass ratios q≳2×10-4. We combine our result with that of Suzuki et al. to obtain p=0.73+0.42 -0.34.
EN
We report the discovery of microlensing planet OGLE-2017-BLG-0373Lb. We show that while the planet-host system has an unambiguous microlens topology, there are two geometries within this topology that fit the data equally well, which leads to a factor 2.5 difference in planet-host mass ratio, i.e., q=1.5×10-3 vs. q=0.6×10-3. We show that this is an "accidental degeneracy" in the sense that it is due to a gap in the data. We dub it "the caustic-chirality degeneracy". We trace the mathematical origins of this degeneracy, which should enable similar degenerate solutions to be easily located in the future. A Bayesian estimate, based on a Galactic model, yields a host mass M=0.25+0.30 -0.15 M⊙ at a distance DL=5.9+1.3 -1.95 kpc. The lens-source relative proper motion is relatively fast, μ=9 mas/yr, which implies that the host mass and distance can be determined by high-resolution imaging after about 10 years. The same observations could in principle resolve the discrete degeneracy in q, but this will be more challenging.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.