Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Regularising Ill-posed Discrete Optimisation: Quests with P Systems
EN
We propose a novel approach to justify and guide regularisation of an ill-posed one-dimensional global optimisation with multiple solutions using a massively parallel (P system) model of the solution space. Classical optimisation assumes a well-posed problem with a stable unique solution. Most of important practical problems are ill posed due to an unstable or non-unique global optimum and are regularised to get a unique best-suited solution. Whilst regularisation theory exists largely for unstable unique solutions, its recommendations are often routinely applied to inverse optical problems with essentially non-unique solutions, e.g. computer stereo vision or image segmentation, typically formulated in terms of global energy minimisation. In these cases the recommended regularisation becomes purely heuristic and does not guarantee a unique solution. As a result, classical optimisation algorithms: dynamic programming (DP) and belief propagation (BP) – meet with difficulties. Our recent concurrent propagation (CP), leaning upon the P systems paradigm, extends DP and BP to always detect whether the problem is ill posed or not and store in the ill-posed case an entire space of solutions that yield the same global optimum. This suggests a radically new path to proper regularisation: select the best-suited unique solution by exploring statistical and structural features of this space. We propose a P systems based implementation of CP and set out as a case study an application of CP to the image matching problem in stereo vision.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.