Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article provides a discussion on the results of the authors’ original studies of a power transmission system of a mining scraper conveyor coupled with an innovative highly flexible clutch, conducted in operating conditions. The research consisted in establishing the static characteristics of the highly flexible clutch in question, determining the torsional vibrations of the said highly flexible clutch and the vibrations of the transmission housings at a test rig, verifying if the coupling between the innovative flexible clutch and a typical scraper conveyor drive unit was correct, and testing durability of individual components of the highly flexible clutch. Following the aforementioned tests and based on the static characteristics of the highly flexibleclutch examined, one can distinguish three phases of its operation: initial, main, and final –all differing in terms of flexibility. Furthermore, upon increasing the flexibility of the metal clutch, a significant decline in the root mean square (RMS) values of linear vibration accelerations was observed compared to the blocked condition of the clutch. It was further noticed that, as the torsional vibrations of the clutch shaft were increasing, the linear vibrations measured at the transmission bearing housings were decreasing significantly. Based on the tests conducted in operating conditions, it was found that the durability of the flexibilising system (bolt and nut) was sufficient and that there were no thermal effects associated with the motion of the system components.
EN
This paper deals with the issue of operating damage of combustion engine valves. It presents an innovative way and construction of a tool for strengthening piston engine valves by way of surface working. It presents the concept of machines for comprehensive surface working and for profiling the faces of combustion engine valves. It also includes the discussion of the methodology of working.
EN
This article attempts to solve the problem of load compensation in mesh planetary gearing, with the innovative design idea, resulting from the increased plasticity of the planet wheels (satellite). The cognitive main objective of the experimental work was carried out to identify the comparative effect of the split narrow planet gears, on the load distribution on the length of the teeth of the planet gears of the central wheel of the planetary gear. Achieving this aim, in addition to in-depth analysis, requires experimental research on a specially-built test stand and simulation tests on a solid model of the transmission using the finite element method (FEA). This article presents the concept of a novel test stand, design methodology and research on the influence of the sectional satellite wheels on the load mesh of planetary gears in mining machines.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.