Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A system optimization method was used, which consists in the consistent justification of optimal technological and constructive solutions and parameters of drainage polder systems during the development of their projects. This is done in compliance with modern economic and environmental requirements according to criteria and models for different levels of management decision-making over time (project, planned operation). Based on the performed relevant predictive and optimization calculations for the conditions of the real object, the following three tasks have been accomplished. (1) The optimal pump module at the stage of operation for the existing polder drainage system has been substantiated. (2) The design of the pumping unit and the parameters of its components during the reconstruction of the polder drainage system have been improved. This made it possible to reduce the load on the pumping equipment, the duration of its operation, and the cost of electricity by 20–40%, depending on the water level of the year. The improvement was carried out by the diversion of the corresponding part of the surface runoff with additionally introduced gravity elements in the form of a puncture in the body of the protective dam and a siphon intake. (3) We have substantiated the optimal water regulation technology for the existing polder drainage system in modern and forecast weather and climate conditions, which will ensure the maintenance of the necessary water-air regime of the drained soils in different phases of the growing season of agricultural crops. This will make it possible, on demand, to increase the energy and general environmental and economic efficiency during their creation and functioning of the polder drainage system in accordance with modern changing conditions.
EN
In view of global climate changes, the study of the ecological feasibility of hydromelioration systems and their impact on the natural environment is extremely relevant. Evaluation of the ecological effectiveness of water regulation of drained land for current and forecasted climatic conditions was performed by determining the environmental reliability coefficient, which characterizes the ecological reliability of a reclamation project. The environmental reliability coefficient was determined on the basis of a certain set of physical indicators. The set of physical indicators reflects the extremely complex nature of the formation of water and general natural and ameliorative regimes of reclaimed land as a whole in changing natural, climatic and agro-ameliorative conditions of real objects. Their determining is based on the implementation of a machine experiment based on a complex of predictive and simulation models for water regulation of drained land on a long-term basis. The obtained results showed that ecologically optimal natural, ameliorative and soil regimes of the drained land, subject to compliance with the restrictions 0.5 < kn ≤ 1.0, are ensured by the application of humidifying sluicing. At the same time, the environmental reliability coefficients are 0.59 and 0.58, respectively, for current and forecast climatic conditions, and the level of ecological reliability of applying humidification to drained land is sufficiently high. The carried out evaluation of ecological reliability of water regulation of drained land confirms the need to increase the role of humidification as a component of effective adaptive measures on drained land in modern and forecasted climatic conditions. Humidifying measures have a decisive influence on the ecological effect and the ecological and amelioration state of drained land.
EN
The presence of water, food and energy crises, both at the global and regional levels, as well as their deterioration under conditions of climate change, with an insufficient level of technical condition of existing irrigation systems, increase the strategic importance of irrigation as the guarantor of the agricultural sector sustainable development. This makes it necessary to increase, foremost, energy and overall (technical, technological, economic, and environmental) efficiency of the closed irrigation network of irrigation systems. In this regard, the complex that includes organisational-technological, technical, and resource-saving groups of measures was developed. Estimation of energy and overall efficiency of the closed irrigation network of irrigation systems at the implementation of developed complex were executed on the example of the agricultural enterprise located in the Petropavlovsk district of the Dnipropetrovsk region of Ukraine. For this purpose, machine experiment based on a use of the set of optimisation, forecasting and simulation models was implemented, including the model of climatic conditions, the model of water regime and water regulation technologies, as well as the model of crop yields on reclaimed lands. According to the obtained results, established that implementation of the complex reduces the consumption of irrigation water by 2.2-30.7% and electricity consumption by 12.9-38.2%. The rate of specific costs decreases from 1.6 to 1.32-1.47, and the coefficient of environmental reliability increases by 5.6-16.7%. At the same time, the profitability index increases from 1.07 to 1.75-2.57, and the discounted payback period decreases from 18 to 8-5 years.
EN
The article focuses on the actual scientific and practical problem of accounting for the influence of meteorological and climatic factors in the technical and economic calculations in the field of environmental management. It has been proven that the introduction of scientifically sound and effective methods of using meteorological and climatic information in economic calculations significantly reduces the loss caused by weather conditions and improves the implementation of an optimal strategy for agricultural production on reclaimed lands. Such calculations are based on economic and statistical modelling of different variants that accounting for standard hydrometeorological information in the implementation of design, management and economic decisions. This increases the validity and reliability of calculations, as well as their compliance with the actual operating conditions of environmental and economic facilities. Consequently, this attracts increased interest of both public and private investors. Not only under such conditions is a sustainable development of environmental management sectors possible but also the adaptation to global climate change and additional benefits from the efficient economic activity in the new environmental conditions.
EN
The article is devoted to the actual scientific and practical problem of improving methodological and methodical approaches to the evaluation of design solutions in the water management and land reclamation industry based on the ecological and economic principles in conditions of uncertainty. The current stage of the development of the water management sector in Ukraine is characterized by a combination of past negligence and the present energy, food and water crises, as well as global climate change. To solve these problems, it is necessary to reform organizational-economic relations in the industry, including new sources and forms of financing for water management and land reclamation projects, introduction of new environmentally advanced technologies, and the improvement of the existing ecological and economic evaluation of investments. Based on scientific and methodological recommendations used for evaluating the effectiveness of investment in various spheres of economic activity, the authors developed and implemented an improved methodology for the evaluation of water management and land reclamation projects. It is based on methodological approaches that cover such elements as the variety of options, changes in the value of money over time, specific project implementation environment, including the impact of weather, climate and environmental factors on project performance, multilevel and gradual evaluation of a project against specific criteria and according to stages of the project cycle. The method was tested during the reconstruction of a rice irrigation system in the steppe zone of about 3000 ha in Ukraine. Economic results, namely the deterministic payback period and investment return index confirm that the proposed mechanism, unlike the traditional one, increases the economic and environmental feasibility of water management and land reclamation projects. Therefore, it stimulates investment in the land reclamation sector.
EN
The article is devoted to a topical scientific problem in modern conditions – valuation of land in Ukraine. The imperfection of the existing approaches requires further research on the changing conditions of land use and their impact on land pricing. A methodology for determining the market value of reclaimed land based on a differentiated assessment of its productivity through crop yields is proposed, taking into account natural and climatic zones and other conditions of a particular region. The basis of the methodology is the application of long-term forecast and a set of forecast and simulation models, in particular the model of area climatic conditions and the model of water regime and water regulation technologies on reclaimed land. At that the crop yield model as a complex multiplicative type model takes into account all main factors influencing crop yield formation: weather, climatic and soil conditions, cultivation techniques, water regime of reclaimed land, etc. The proposed approaches were tested by the method of large-scale machine experiment using a land plot in the zone of Western Polissya of Ukraine as the example. The obtained results indicate that there is a differentiation in land value, which is a proportional derivative of the yield of cultivated crops depending on the conditions of their cultivation. The variation range of the studied indicators in relative form by the ratio of maximum and minimum values to the weighted average value is for cultivated crops – 393%, and for the above soils – 44.6%. Thus, within one object, the estimated value of land in view of available soils and cultivated crops varies from USD2456∙ha–1 to USD4005 ∙ ha–1, averaging USD3522 ∙ ha–1 .
EN
The geographical location and climatic conditions of Ukraine cause the active development of land reclamation, as it enables to ensure stable and high yields. The complexity of forecasting in this area, namely the dependence of the results on the changing weather and climate conditions, does not allow to effectively use the standard instruments for justifying the investment for agricultural and land reclamation innovation. The necessity of improving methodological approaches to evaluating the effectiveness of investments in projects in the field of agricultural production and land reclamation was substantiated. The proposed approaches were tested on the advanced technology of water treatment in irrigation based on using a vibrating gravitation filter enabling to perform simultaneously the processes of water treatment and filter element regeneration. The obtained results clearly show that the advanced technology of irrigation water treatment and the developed for this technology design of the vibrating gravity filter are cost-effective. The current payback period for irrigation projects when using the purified water under this advanced technology is 5 years. It is the same as for the irrigation projects when using clean irrigation water. Thus, our proposed approaches to the evaluation of investments in new water treatment technologies applied in irrigation enable to adapt the modern methodology of analysis of economic and investment efficiency of projects to the domestic needs of agricultural production, namely to take into account the impact of changing weather and climate conditions on the resulting economic parameters.
EN
The analysis of the current state of weather and climatic conditions and evaluation of their predicted changes for immediate and distant prospect in the drained areas of Ukrainian Polissia region was carried out in the article. The main trends in changes of meteorological characteristics and their possible effect on the conditions of functioning water management and ameliorative objects and complexes as well as on the natural and ameliorative state of drained areas were identified. The research uses a method of predictive-simulation modelling with used predictive assessment models of normalized distribution of the basic meteorological characteristics in the long-term and one-year vegetation context. According to the results of the research it was established that, for today a high variability in meteorological characteristics can lead to the significant deterioration of operation conditions of water management and ameliorative objects and units, as well as natural and ameliorative conditions of drained lands in Polissia region as a whole. Core measures regarding the adaptive potential enhancement and development in the region under the conditions of climate change were examined.
PL
W pracy przeprowadzono analizę obecnego stanu pogody i warunków klimatycznych oraz ocenę spodziewanych zmian w krótszej i dłuższej perspektywie czasu na drenowanych obszarach ukraińskiej części regionu Polesia. Zidentyfikowano główne trendy zmian charakterystyk meteorologicznych i ich potencjalny wpływ na warunki funkcjonowania gospodarki wodnej w obiektach i kompleksach melioracyjnych oraz na naturalny i zmieniony stan drenowanych obszarów. W badaniach wykorzystano modelowanie prognostyczno-symulacyjne z użyciem modeli znormalizowanego rozkładu podstawowych charakterystyk meteorologicznych w kontekście wieloletnich i rocznych zmian roślinności. Ustalono, że duża zmienność elementów meteorologicznych może prowadzić do znaczącego pogorszenia gospodarki wodnej i stanu obiektów melioracyjnych oraz warunków naturalnych na drenowanych obszarach całego Polesia. Zbadano główne zabiegi związane ze wzmocnieniem potencjału adaptacyjnego i rozwojem regionu w warunkach zmian klimatycznych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.