Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Knowing the material properties is of a crucial importance when planning to manufacture some struc-ture. That is true for the steel structures, as well. Thus, for the proper planning of a certain steel part or a structure production, one must be aware of the properties of the material, to be able to make a qualified decision, which material should be used. Considering that the manufacturing of steel prod-ucts is constantly growing in various branches of industry and engineering, the problem of predicting the material properties, needed to satisfy the requirements for the certain part efficient and reliable functioning, becomes an imperative in the design process. A method of predicting four material prop-erties of the two stainless steels, by use of the artificial neural network (ANN) is presented in this article. Those properties were predicted based on the particular steels’ known chemical compositions and the corresponding material properties available in the Cambridge Educational System EDU PACK 2010 software, using neural network module of MathWorks Matlab. The method was verified by com-paring the values of the material properties predicted by this method to known values of properties for the two stainless steels, X5CrNi18-10 (AISI 304), X5CrNiMo17-12-2 (AISI 316). The difference be-tween the two sets of values was below 5% and, in some cases, even negligible.
EN
Due to difficult pandemic situation with COVID-19 decease, as well as due to current geopolitical circumstances in the world, we are facing the shortage of steel and therefore the impossibility of delivering the contracted products within the agreed deadlines. It is thus necessary to find suitable steel for replacement. The procedure for selecting one such steel for substituting the deficit steel 25CrMo4,for the purposes of producing a responsible welded assembly, is described in this paper. After the careful analysis, the steel 42CrMo4 was taken into consideration as a possible substitute material. Prior to applying the new selected steel, it was necessary to perform the following tests: analyze its chemical composition, determine its most important mechanical properties and evaluate its weld ability. Then, the optimal welding and heat treatment technologies were determined, so that the quality of the responsible welded structure would meet all the requirements, as the structure made of originally used steel. For the new steel, all the mentioned and some additional tests were conducted and the appropriate welding technology was prescribed. To verify the selected technology, appropriate tests were conducted on the model welded samples, the results of which are presented in this paper. Based on the analysis of the obtained results, it was concluded that the 25CrMo4 steel can be replaced by the 42CrMo4 steel, however, with the mandatory application of appropriate supplementary measures.
EN
During the process of regeneration of machine parts, certain phenomena occur that have a significant impact on the loss of their working ability. Hereditary properties are expressed by the interdependence of geometric and physical-mechanical-metallurgical parameters of gear teeth created during the technological operations of regeneration of worn teeth by hard-facing. The influence of the type of additional material (electrodes and their combinations) on the tribological characteristics of welded gear teeth was considered, whereby the so-called hard additional materials were applied. Those are the additional materials that give the required surface hardness of the teeth without subsequent thermal or thermochemical treatment. This research did not involve the regeneration of specific worn gears removed from machine systems, but the new gears were made, which were then damaged and then regenerated by hard-facing using the shielded metal arc welding (SMAW) procedure. Thus, all the tested gears were made of the same material, belonged to one batch and were machined on the same machines with the same machining regimes. The tests were performed on samples made of 20MnCr5 steel for cementation, on a tribometer by the “block on disc” method, which was designed to simulate the operating conditions of coupled teeth of concrete gears in the exploitation conditions. Based on the conducted tribological tests, the average coefficients of friction and topography of the surfaces were determined by measuring the wear trace and it was defined which additional materials give the best tribological characteristics of the surfaces of gears regenerated by hard-facing.
EN
Steels of the ARMOX class belong into a group of the fine-grained, increased strength steels, which are manufactured by the quenching and low tempering procedure, with intensive thermo-mechanical treatment at high temperatures. Combination of the heat and mechanical treatments provides for the fine grains and exceptionally good properties of these steels, while the low-tempering enables relatively high hardness and good ballistic properties. This is why the welding of these steels can negatively affect the material properties in individual zones of the welded joint, what could lead to worsening of the material's ballistic properties, as well. The model plates were welded with the specially prescribed technology; the joints were the but-joint, corner joint and the joint with the shielding plate. In this paper are presented results obtained from the ballistic tests of the plates welded by the prescribed technology; tests consisted of shooting with three types of live ammunition at different types of the welded joints.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.