This paper investigated the impact of land use/cover changes on the flow of the Zarqa River in Jordan over a period of twenty-eight years. The land use/cover maps were derived using a set of medium spatial images with full scenes for the years 1989, 2002, 2011 and 2017. These images correspond to the river flow data for the same hydrological rainy seasons. The component of the river flow consists of the base-flow, flood and contribution of effluent from treatment plants. Base-flow was separated from hydrographs and effluent contribution was obtained. Runoff coefficient was determined as the ratio of flood volume to rainfall volume. The land use/cover maps were classified as urban fabrics, bare rocks, open rangelands and bare soils, agricultural areas, agro-forestry, and water bodies. During the study period, urban areas increased from 4.87% to 16.14%, and agricultural areas increased from 21.69% to 31.66%. The areas of rangelands and bare soil decreased from 34.91% to 22.57% and bare rocks from 35.98% to 27.57%, respectively. The increase in urban and agricultural areas resulted in runoff coefficient improvement from 1.89% in 1989/1990 to 2.72% for 2016/2017. The results could be useful for planners and decision makers for future flow management in the Zarqa River Basin. The approach and results of this study confirm the findings of similar studies for land and water management.
The current study was undertaken to assess the physicochemical quality of the Kufranja dam (KD) surface water in northern Jordan during the summer and winter seasons [2019]. The samples were analyzed for temperature, pH, dissolved oxygen, conductivity, major cations, major anions, and heavy metals. Most of the physicochemical parameters exhibited a similar spatial distribution, where the maximum concentrations were observed at the dam’s entrance, while the minimum concentrations were recorded at the dam’s end. This indicates that the factors affecting their occurrence and distribution are the same, including natural discharges from the surrounding catchment areas, weathering products, agricultural activities, and wastewater effluents that enter the dam via Wadi Kufranja. All the physicochemical parameters and heavy metals in KD water lie below the maximum permissible levels of the Jordanian and international standards for drinking and irrigation, except for EC values that are above WHO standards for drinking. The application of the water quality index (WQI) depicts that the KD water is chemically unsuitable for use in drinking and needs proper treatment before use. The irrigation indices (SAR, Na%, and MH) indicate that the KD water is chemically suitable for irrigation, whereas EC results and USSL diagram showed that the dam’s water is suitable for irrigation and belongs to the categories of good to permissible for irrigation. Therefore, KD water is suitable for irrigation of most soils (except soils with low salt tolerance). Crops with good salt tolerance are recommended and a special treatment of salinity might be required.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.