Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The wastewater treatment landscape in Central Europe, particularly in Poland, has undergone a profound transformation due to European Union (EU) integration. Fueled by EU funding and rapid technological advancements, wastewater treatment plants (WWTPs) have adopted cutting-edge control methods to adhere to EU Water Framework Directive mandates. WWTPs contend with complexities such as variable flow rates, temperature fluctuations, and evolving influent compositions, necessitating advanced control systems and precise sensors to ensure water quality, enhance energy efficiency, and reduce operational costs. Wastewater mathematical modeling provides operational flexibility, acting as a virtual testing ground for process enhancements and resource optimization. Real-time sensors play a crucial role in creating these models by continuously monitoring key parameters and supplying data to predictive models. These models empower real-time decision-making, resulting in minimized downtime and reduced expenses, thus promoting the sustainability and efficiency of WWTPs while aligning with resource recovery and environmental stewardship goals. The evolution of WWTPs in Central Europe is driven by a range of factors. To optimize WWTPs, a multi-criteria approach is presented, integrating simulation models with data mining methods, while taking into account parameter interactions. This approach strikes a balance between the volume of data collected and the complexity of statistical analysis, employing machine learning techniques to cut costs for process optimization. The future of WWTP control systems lies in “smart process control systems”, which revolve around simulation models driven by real-time data, ultimately leading to optimal biochemical processes. In conclusion, Central Europe’s wastewater treatment sector has wholeheartedly embraced advanced control methods and mathematical modeling to comply with EU regulations and advance sustainability objectives. Real-time monitoring and sophisticated modeling are instrumental in driving efficient, resource-conscious operations. Challenges remain in terms of data accessibility and cost-effective online monitoring, especially for smaller WWTPs.
EN
One of the important ways to prevent permanent environmental pollution is to constantly monitor its quality, which can be performed in several ways. The present bioindication study analyzed the level of diversity and abundance of biofilm microorganism communities, which illustrate the state of the studied aquatic environment, enabling to determine its quality. The impact of stormwater discharge on the receiver at particular points was evaluated on the basis of the reaction of selected microorganisms or their groups to the substances appearing in the watercourse. The study of indicator organisms gives information about the waters of a given body of water without expensive hydrochemical tests and without causing a burden on the environment during the production as well as disposal of reagents that are consumed in many classical physicochemical analyses. On the basis of selected algal species, the Shannon index and McArthur index were calculated, and the effect of storm sewer discharge on the communities of indicator organisms was determined. The best visible impact of storm sewer discharge was seen on the basis of the entire study cycle in relation to the median of the McArthur index.
EN
The storage and disposal of sewage sludge from municipal wastewater treatment plants is becoming an increasing problem on a global scale. The attention of scientists is directed to the search for unique technologies to manage them. Firing sewage sludge in furnaces and producing lightweight aggregates and granules constitutes an innovative method of its disposal. The resulting granules could be a substitute for commonly used materials such as perlite, vermiculite, expanded clay, or LSA, and could be used as a secondary material in the construction industry, including road construction, as various types of ballast, and as an equivalent to aggregate in concretes. However, given that sewage sludge is increasingly used in biogas production, it does not completely decompose in the process and is still a problematic waste for many municipal treatment plants. Therefore, the use of sewage sludge pellets in construction, or any other industry, could revolutionize the market. The purpose of the conducted research was to evaluate the heat-insulating properties of granules produced from sewage sludge from the Municipal Wastewater Treatment Plant "Łyna" in Olsztyn used as a heat-insulating material.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.