Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Machining difficult-to-cut materials involves challenging machining conditions, including higher temperatures in the cutting zone, cutting forces and friction. Another important phenomenon is vibration, which is undesirable when manufacturing high quality workpieces. One way to reduce vibration in the cutting zone is to use cooling methods. Due to its environmentally friendly nature, the minimum quantity lubrication (MQL) method has already been widely used in metalworking. However, when combined with nanofluids, it improves the ability of the aerosol to dissipate more heat and increase lubrication in the cutting zone. This paper presents the effect of a polyol ester-based Al2O3 nanofluid due to the varying mass concentration of nanoparticles on the vibration during turning of Ti6Al4V alloy and compares the results with dry cutting and the MQL method without nanoparticles. Four concentrations (0.25−1 wt%), variable nanofluid flow rate E = 0.388−1.182 g/min and air flow rate P = 10−40 l/min were considered. According to the statistical analysis, the most important factor influencing tool vibration was the mass concentration of nanoparticles in the cutting fluid. By combining the MQL method with 0.5 wt% Al2O3, the vibration acceleration RMS values were found to be the lowest. When compared to the MQL method without nanoparticles, the RMS values for dry cutting ranged from 17.8% to 24.9%, and for wet cutting they were reduced by about 10.9-18.5%.
EN
Recently, environmental consciousness has led to the quest for ways to minimise negative elements in machining operations that threaten operator health and the environment. Titanium alloys are hard to cut, thus cooling the cutting zone is essential to reduce tool wear. Variations in Al2O3 nanoparticle concentrations supplied to the MQL cutting fluid affect cutting wedge wear during Ti6Al4V alloy turning. A diameter of 15 nm nanoparticles were utilised at 0.25, 0.5, 0.75, and 1 wt% mass concentrations. In the experiments, the flank face wear band width VBB and crater width KB were measured. Comparisons were also made using dry-cutting tools and the MQL approach without nanoparticles. X-ray microanalysis was used to quantify and qualitatively assess the chemical composition of chosen rake surface micro-areas. Studies showed that Al2O3 nanoparticle mass concentration affects tool wear when turning a hard-to-cut alloy. 0.5 and 0.75 wt% mass concentrations had the lowest flank and rake wear of the four mass concentrations. The SEM examination showed that 0.5 wt% mass concentration decreased adhesive wear the most.
EN
High-temperature thermo-mechanical processing (HTTMP) is a combination of plastic deformation and heat treatment operations. Such action makes it possible to increase metal mechanical properties resulting from both mechanical strengthening and heat treatment. As a result, it is possible to achieve high complex of operating characteristics of different types of steel and other alloys. However, there is a lack of information on the applicability of HTTMP of powder steel. These types of steel are very effective substitutes for traditional structural steel but are characterized by poor mechanical properties. This study considers the possibility of using HTTMP for powder steel frame additionally infiltrated by bronze with MoS2 addition to increase mechanical properties of the materials studied. Steel infiltrated, infiltrated and then hardened, infiltrated and then HTTMP treated with strain rates of 30, 50 and 70% were compared. The microstructural properties and hardness of the materials before machining were studied as well as the cutting forces and surface topography of those materials after turning with AH8015 carbide inserts. Cutting forces tests were realized with vc = 157 m/min, f = 0.25 mm/rev and ap = 0.25 mm. Surface topography tests were carried out with vc = 157 m/min, f = 0.25 mm/rev and ap = 0.25 mm. Constant cutting parameters were used to eliminate the effects of rest factors. It was found that the lowest cutting forces (Fc, Fp and Ff), surface roughness parameters (Sa and Sq) and small areas with single high peaks on the machined surface were obtained for infiltrated powder steel with subsequent HTTMP machining under 50% strain rate.
EN
Titanium alloys belong to the group of difficult-to-cut materials, machining of which leads to a number of challenges including large thermal loads on the cutting inserts and difficulties in obtaining a high quality machined surface. Great cutting forces, in turn, result in increased energy consumption. Therefore, it becomes important to attempt to reduce the amount of power consumed during machining, which can be achieved, among other things, by reducing the value of the coefficient of friction in the cutting zone. This paper presents a study on the influence of the size as well as the Cu nanoparticle concentration added to cutting fluid in MQL method on the power grid parameters while turning of Ti6Al4V titanium alloy. In this research, nanoparticles of 22 nm and 65 nm at concentrations of 0.5 wt% and 0.75 wt% were used. Turning process was carried out with constant cutting parameters and variable aerosol formation parameters, i.e. mass flow rate of nanofluid and volumetric flow rate of air. Based on the study, the use of 22 nm nanoparticles at 0.5 wt% concentration is recommended to achieve the smallest monitored values of the power grid parameters. The statistical analysis revealed that, out of the aerosol formation parameters considered, both the air flow rate and nanofluid flow rate do not significantly affect the values of the analysed power network parameters. However, the most significant factor is the variable nanoparticle size.
EN
The paper presents evaluation of the surface topography obtained after turning of AISI 1045 steel with the use of cemented carbide tools diversified in terms of applied titanium-based coatings. During the research, three types of coatings deposited with the PVD method on a P25 sintered carbide insert were compared: nitride-titanium TiN, nitride-aluminum-titanium TiAlN and carbon-titanium TiC in a wide range of variable cutting speeds 125 - 325 m/min and variable feeds 0.05 - 0.25 mm/rev. The quality of the machined surface was assessed on the Sensofar S neox System optical profile meter using the confocal method. The paper presents the results of 3D parameters, contour maps, isometric views and material ratio curves. The surface topography analysis showed that for the TiAlN coated insert, lower surface roughness parameters were observed in the range of lower cutting speeds and higher feeds, while for higher cutting speeds, lower values of the selected 3D parameters were found for the insert with TiC coating. For the insert with TiC coating, the most even distribution of the valleys and ridges of the machined surface roughness was also observed. The research results determined the range of cutting parameters that allow the selection of the appropriate type of titanium-based coating when machining AISI 1045 steel.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.