Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The chosen plan for our case study is a network mixture design consisting of 21 mixtures. The application of this method has proven to be immensely useful in studying the influence of composition parameters (composite design) and the utilization of various types of mineral additives (mixture design). The application of the Design of Experiments (DOE) method, based on a statistical approach, allowed for a better understanding of the effect of formulation parameters, including the proportion of alluvial sand (75%), dune sand (25%), the total amount of sand kept at constant percentages, the dosages of brick powder, limestone filler and ceramic powder (all varying from 0 %, 20 %, 40 %, 60 %, 80 %, and 100 %), while keeping the dosage of superplasticizer and the water/binder ratio constant. This approach helped to understand the interactions between these parameters and their impact on the process. Mathematical models relating the variations of these parameters to the workability and compressive strength of such concrete mixtures have been established. The results obtained show that the workability of SCSC (expressed by slump flow and V-funnel flow) improves with the increase in the dosage of limestone filler (FC), brick powder (PB), and ceramic powder (PC), with element having a different impact, be it alone or in a combination. Moreover, they all improved the behavior of SCSC in both the fresh and hardened states. The experiment shows that increasing the proportions of FC and PC in the mixture, whether linear, binary, or ternary, leads to a significant improvement in compressive strength. Furthermore, better strength is observed in the ternary mixture at 28 days, with a strength of 43 MPa, with the following proportions (FC 70%, PB 20%, PC 10%). Finally, the result at 180 days of 48 MPa confirms the following proportions (PC 60 %, FC 30 %, PB 10 %) The compliance of some SCSC compositions was tested according to the recommendations of the French Association of Civil Engineering.
2
Content available remote Numerical failure analysis of laminated beams using a refined finite element model
EN
In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams.
EN
Polyethylene terephthalate is a synthetic material known as PET. PET strapping bands is a material commonly used in all industries for packaging and bundling. The excessive use of this material has led to the pollution of the urban environment, which necessitated the search for effective solutions to dispose of this waste. The treatment and reuse of these materials is among the best solutions that contribute to reducing environmental pollution on the one hand and enabling the obtaining of economical products on the other hand. The main purpose of this experimental study is to valorize dune sand mortar and PET waste in the manufacture of cement mortar. It also aims to investigate the impact of the inclusion of recycled PET fibers on the physical and mechanical properties of the reinforced mortar. The study was carried out in several phases; after a physical and chemical characterization of the materials used, a method for the composition of mixtures was proposed, which is based on the progressive substitution of dune sand by recycled PET fibers. The quantity of cement added to each mixture is fixed at 450 g, and that of dune sand and fibers is taken as equal to 1350 g. In order to properly examine the influence of the incorporation of fibers on the properties of the reinforced mortar, the substitution rate of dune sand by the fibers varied from 0% to 2.5% with a step of 0.5%. For each mixture, many characteristics of the mortar were tested, such as consistency, bulk density, compressive strength, and flexural strength. The results obtained show that the incorporation of PET fibers has a significant effect on the fresh and hardened properties of the treated mortar.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.