Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
RU
V dni prazdnovaniâ 70-letiâ Kitajskoj Narodnoj Respubliki (1.10.2019) neodnokratno podčerkivalis’ uspehi vo vseh oblastâh žizni naroda i èkonomiki strany, dostignutye za gody narodnoj vlasti. Otmečalos stremlenie kitajskogo obŝestva sohranât’ bogatuû kul’turu i istoriko-arhitekturnoe nasledie drevnej strany. Stat’â posvâŝena analizu roli tradicij vrazvitii kitajskogo gradostroitel’stva (izložennyh v traktate Kao-Gun-Czi) i sovremennogo opyta ohrany pamâtnikov arhitektury (na primere gorodov provincii Hènan’ - Čžènčžou, Kajfyn, Dènfèn).
EN
During the celebrations of the 70th anniversary of the People’s Republic of China (October 1, 2019) the successes, achieved in the years of people’s power, in all areas of the people’s life and economy were repeatedly emphasized. The desire of Chinese society to preserve the rich culture, historical and architectural heritage of the ancient country was noted. The article is devoted to the analysis of the role of traditions (described in the canon of Kao-Gong-Ji) in the development of Chinese urban planning and modern experience in the protection of architectural monuments (using the example of Zhengzhou, Kaifeng and Dengfeng cities in Henan province).
EN
The Saxothuringian Terrane defined in the western part of the Bohemian Massif is regarded to have easterly continuations in the Karkonosze–Izera Massif, the Kamieniec Ząbkowicki Belt and the Orlica–Śnieżnik Dome. All these units comprise Early Ordovician (~500 Ma) metagranites associated with mica schists. Even more to the east, ~500 Ma metagranites and metasedimentary rocks occur also in the Strzelin Massif of the East Sudetes, where they are known as the pale and dark Stachów gneisses, respectively. Altogether, these rocks form the Stachów Complex which was thrust on the Strzelin Complex of the Brunovistulicum Terrane during the Variscan Orogeny. The contribution presents lines of evidence for a Saxothuringian affinity of the Stachów Complex rocks: (1) the new SHRIMP U-Pb age data of zircons from both the pale and dark Stachów gneisses; (2) the indication that the zircon age spectra from the ~500 Ma granitoids and their accompanying metasedimentary rocks are similar to those found in other parts of the Sudetes; (3) the “Armorican” age pattern of inherited zircons of the pale Stachów gneisses, as also observed in the Saxothuringian Terrane; (4) the similarity of trace elements and Sm-Nd isotope data of the Stachów gneisses and correlative rocks from the Karkonosze–Izera Massif and the Orlica–Śnieżnik Dome.
EN
New petrographic and geochemical data show some differences between Variscan Bt-Ms granites occurring either as small plutons or dykes in the Strzelin Massif (SW Poland). The granites of the Gromnik and Górka Sobocka plutons are rich in micas and crystallized from "wet" magmas; the granites in the dykes and in the Gębczyce pluton are mica-poorer and cordierite-bearing rocks, derived from “dryer” magmas. The lower initial eNd values in the Bt-Ms granites of the dykes, compared with those in the plutons, reflect a more "crustal" signature of the former, possibly due to local crustal assimilation, via AFC, shortly before emplacement. Much more radiogenic initial 87Sr/86Sr ratios in the dykes, up to 0.726, further suggest the involvement of extraneous, hydrous crustal fluids enriched in 87Sr during the evolution of late-stage magma derivatives. The new U-Pb SHRIMP zircon age of 296 ± 6 Ma for the Gębczyce Bt-Ms granite shows that this body belongs to the third stage of magmatism in the Strzelin Massif. The U-Pb SHRIMP zircon data for the Bt-Ms granite dykes provide ages similar to those of their host rocks: c. 295 Ma for the Gęsiniec tonalite and the enclosed Bt-Ms granite, and c. 285 Ma for the Strzelin biotite granite and its Bt-Ms granite dykes. These new data from peraluminous rock-types complement our previous studies focused on the tonalites, granodiorites and biotite granites, and shed light on the late-stage igneous evolution of the Strzelin Massif.
EN
Petrological data and recently published U/Pb zircon SHRIMP ages reveal a protracted Variscan magmatic evolution in the Strzelin Massif (SW Poland), with three main stages of granitoid plutonism: 1 – tonalitic I, 2 – granodioritic and 3 – tonalitic II/granitic. The granitoids of the second and third stages form the Strzelin intrusion that is composed of three varieties: medium-grained biotite granite, fine-grained biotite granite and fine-grained biotite-muscovite granite. New SHRIMP data show that the medium-grained and fine-grained biotite granites comprise different zircon populations that reflect complex and prolonged plutonic processes. Two distinct magmatic events seem to be represented by well-defined zircon populations with apparent 206Pb/238U ages of 303 ± 2 Ma in the medium-grained biotite granite, and 283 ± 8 Ma in the fine-grained biotite granite. These dates, however, do not necessarily reflect the true magmatic ages, possibly being “rejuvenated” by radiogenic lead loss in zircons (impossible to resolve based on routine SHRIMP data). Based on field evidence, the third variety, the biotite-muscovite granite, postdates both types of biotite granites. The petrographic and geochemical features, including Nd isotope signature, along with various zircon inheritance patterns and ages, suggest that the parental magmas of the three granites originated from different crustal sources and were emplaced during three successive magmatic pulses.
EN
Many basement units of the Variscan orogen that are exposed in the Sudetes, SW Poland, comprise widespread ~500 Ma orthogneisses and associated mica schists, the latter often of unknown age and derivation. Our new U-Pb sensitive high resolution ion microprobe (SHRIMP) zircon ages from two samples of the Izera metagranites, both around 503 Ma, are in a good agreement with the well established late Cambrian-early Ordovician magmatism in the West Sudetes. An Archean inherited zircon age of ~ 3.4 Ga is one of the oldest zircon ages reported so far from the Bohemian Massif. The orthogneisses of the Karkonosze-Izera Massif (KIM) have calculated TDM ages of between 1.50 and 1.93 Ga, but these ages are not necessarily evidence for a Mid-Proterozoic crustal derivation: more probably, they reflect the average of several detrital components mixed into the granitoid magma sources. In spite of likely age differences, the Lusatian greywackes, which outcrop to the west, and the mica schists of the KIM display similar geochemical characteristics, suggesting that both could have been derived from similar sources. However, the presence of lower Ordovician products of within-plate volcanism - intercalations of quartzofeldspathic rocks and amphibolites within the mica schists - supports an idea that the mica schist protoliths, derived mainly from crustal rocks, could have also contained an admixture of contemporaneous volcanic materials. The age spectra of inherited zircons from the KIM orthogneisses and their Nd-isotopic signatures are comparable to the Lusatian greywackes: this suggests that the Lusatian greywackes, or very similar rocks, could have been the source material for the granitic protoliths of the KIM orthogneisses.
EN
Muscovite-biotite granites, medium-grained biotite tonalites and fine-grained granodiorites from three boreholes situated in the middle part of the Lipowe Hills were characterized. It was found that the muscovite-biotite granites from the boreholes correspond to the Górka Sobocka granite known from the northern part of the Lipowe Hills. This granite was in turn compared to the light coloured granitoids, the so-called Gębczyce and Biały Kościół granites, from the Strzelin crystalline massif. The age link between the muscovite-biotite granites from the Lipowe Hills crystalline complex and those from the Strzelin massif was confirmed by the result of the whole-rock Rb-Sr analyse of a muscovite-biotite granite sample collected in the Górka Sobocka quarry. This result plots on the isochron obtained previously for the muscovite-biotite granites from the Strzelin and Gębczyce quarries at ca 330 Ma, with an initial 87Sr/86Sr ratio of 0.7055.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.