Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We consider a spring-mass model of human running which is built upon an inverted elastic pendulum. The model itself consists of two sets of differential equations - one set describes the motion of the centre of mass of a runner in contact with the ground (support phase), and the second set describes the phase of no contact with the ground (flight phase). In our previous approach, we assumed that periodic solutions in the support phase are symmetrical with respect to the touch-down and take-off angles for the large spring constant (or small angle of attack). Based on proposed solutions, we introduce analytical approximations of an asymmetrical boundary value problem, which brings our model closer to real running. By appropriately concatenating asymptotic solutions for the two gait phases, we are able to reduce the dynamics to a one-dimensional apex to apex return map and then to investigate the existence and stability of periodic solutions. Unlike in the symmetrical version, we could not find sufficient conditions for this map to have a unique stable fixed point. Extending the model with the possibility of taking off with the angle other than during landing, the aforementioned asymmetry, is necessary in the context of real run considerations. Thanks to this, our work could be enriched by experimental results. In this paper, we will present the possible reasons for the instability of asymmetric solutions in conjunction with conclusions from the observation of real runs.
PL
W pracy rozważamy model biegu, w którym człowiek sprowadzony jest do punktu masy na nieważkiej sprężynie, a momencie kontaktu z podłożem staje się odwróconym sprężystym wahadłem. Sam model składa się z dwóch zestawów równań różniczkowych - jedno opisuje ruch środka masy biegacza podczas kontaktu stopy z podłożem (faza podparcia), a drugi fazę lotu. W naszym poprzednim podejściu zakładaliśmy, że rozwiązania okresowe w fazie podparcia są symetryczne względem kątów lądowania i odbicia dla dużej wartości sztywności nogi (lub małego kąta ataku). Na podstawie proponowanych rozwiązań wprowadzamy analityczne przybliżenia asymetrycznego problemu brzegowego, co zbliża nasz model do rzeczywistego biegu. Odpowiednio łącząc asymptotyczne rozwiązania dla obu faz biegu, jesteśmy w stanie zredukować dynamikę do jednego wymiaru i utworzyć odwzorowanie powrotu od wierzchołka do kolejnego wierzchołka praboli lotu, a następnie badać istnienie i stabilność rozwiązań okresowych. W odróżnieniu od wersji symetrycznej, nie mogliśmy znaleźć wystarczających warunków, aby to odwzorowanie miało jednoznacznie określony stabilny punkt stały. Rozszerzenie modelu o możliwość odbicia pod innym kątem, niż podczas lądowania (asymetria), jest konieczne w kontekście rozważań nad rzeczywistym biegiem. Dzięki temu nasza praca mogła zostać wzbogacona o wyniki eksperymentalne. W tym artykule przedstawimy możliwe przyczyny niestabilności asymetrycznych rozwiązań w połączeniu z wnioskami z obserwacji rzeczywistych biegów.
2
Content available The Bushell-Okrasiński inequality
EN
We present an expository account of the Bushell-Okrasiński inequality, the motivation behind it, its history, and several generalizations. This inequality originally appeared in studies of nonlinear Volterra equations but very soon gained interest of its own. The basic result has quickly been generalized and extended in different directions strengthening the assertion, generalizing the kernel and nonlinearity, providing the optimal prefactor, finding conditions under which it becomes an equality, and formulating variations valid for other than Lebesgue integrals. We review all of these aspects.
PL
W niniejszej pracy omawiamy nierówność Bushella-Okrasiego: jej historię, motywacje za nią stojące oraz kilka uogólnień. Ta nierówność pierwotnie pojawiła się w badaniach nieliniowych równań Volterry, ale bardzo szybko zdobyła zainteresowanie wielu matematyków. Podstawowy wynik został szybko uogólniony i rozszerzony w różnych kierunkach. Między innymi inni autorzy wzmocnili główną tezę, uogólnili jądro oraz nieliniowość, wyznaczyli optymalną stałą multiplikatywną, znaleźli warunki, przy których występuje równość oraz sformułowali liczne warianty ważne dla całek innych niż Lebesgue’a. Dokonujemy przeglądu wszystkich tych aspektów.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.