Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Fotochemiczna synteza nanocząstek srebra i złota
EN
The activity in nanotechnology has recently increased enormously. This is due to numerous possible applications of nanomaterials in catalysis, optics, electronics, and even health protection. Many applications of silver and gold nanoparticles are possible because of their plasmonic properties. As an example of the plasmonic application of Au and Ag metal nanoparticles one can mention construction of devices for light concentration at the nanometer scale. Such deep-subwavelength optical energy concentrators are used, for example, in surface-enhanced Raman scattering (SERS) to increase the Raman signal by even 10 orders of magnitude, thus facilitating the optical identification of single molecules. Large increase in local field intensity also strongly enhances nonlinear scattering, which can be potentially useful for optical signal processing. In this article we review photochemical synthesis of silver and gold nanoparticles, especially those methods of synthesis which are driven by surface plasmon resonance (SPR) excited in Ag and Au nanoparticles. The most important step of the SPR-driven synthesis of nanoparticles is photocatalytical reduction of metal ions which occurs preferentially at such places of the nanoparticles, at which strong surface plasmons are excited (for example corners, etches). Therefore, during the grown of the nanoparticle, its anisotropy may increase. If the SPR of the seed particles is not excited – due to either the absence of photostimulation or a mismatch between the excitation wavelength and the SPR of the seeds – the deposition of metal does not occur. Therefore, SPR of nanoparticles may be also responsible for wavelength controlled size effects in the synthesis: as the nanoparticles grow and their SPRs shift from the excitation wavelength, the nanoparticles absorb less light and their growth slows. This allows for synthesis of very homogeneous samples of nanoparticles, which may be applied, for example, in various plasmonic sensors.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.