Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł prezentuje etap implementacji bezinwazyjnego systemu pozwalającego na okresowe monitorowanie szczelności gazociągów i stanu ich otoczenia. System składa się z podsystemu pomiarowego – śmigłowiec załogowy z zamontowanym spektroradiometrem podczerwieni i kamerą światła widzialnego oraz podsystemu informatycznego – serwer obliczeniowy z zainstalowanym oprogramowaniem do przetwarzania zarejestrowanych danych, w tym danych hiperspektralnych. W zakresie integracji systemu pomiarowego ze śmigłowcem zbudowano specjalne podwieszenie, które umożliwia bezpieczne użytkowanie kamery hiperspektralnej, oraz wykonano przewody pozwalające na niezakłóconą wymianę danych pomiędzy kamerą a systemem kontrolno-pomiarowym zamontowanym w kabinie helikoptera. Podwieszenie zostało przetestowane podczas prób w locie w zakresie drgań przekazywanych z układu napędowego helikoptera na układ pomiarowy spektroradiometru. Przeprowadzona analiza w dziedzinie częstotliwości oraz czasu sygnałów przyspieszeń, prędkości i przemieszczeń potwierdziła poprawność wykonanego projektu podwieszenia. W kolejnych testach postanowiono zweryfikować gotowość techniczną systemu pomiarowego. W tym celu wytyczono różne trasy przelotu, z uwzględnieniem ograniczeń toru optycznego spektroradiometru, skonfigurowano oprogramowanie, uwzględniając różne tryby rejestracji danych, a następnie wykonywano loty nad zbudowanym specjalnie dla potrzeb projektu stanowiskiem doświadczalnym, pozwalającym na symulowanie naziemnych i podziemnych wycieków metanu z infrastruktury gazowej. Wielokrotnie wykonane rejestracje danych w zakresach światła podczerwonego i widzialnego pozwoliły zgromadzić materiał badawczy niezbędny do weryfikacji gotowości technicznej systemu pomiarowego, poprawności działania stanowiska doświadczalnego oraz opracowanych algorytmów obliczeniowych. Podsystem informatyczny zbudowany jest ze zintegrowanych modułów obliczeniowych, które pozwalają na przetwarzanie danych hiperspektralnych w zakresie detekcji i kwantyfikacji emisji metanu oraz przetwarzanie obrazów w świetle widzialnym w zakresie klasyfikacji obiektów niedozwolonych, występujących w otoczeniu gazociągów. W kolejnym etapie moduły przeznaczone do przetwarzania zarejestrowanych przez kamerę hiperspektralną danych zostaną poddane testom w warunkach rzeczywistych oraz zostaną zoptymalizowane do postaci funkcjonalnego systemu informatycznego.
EN
The paper presents implementation of the design of a non-invasive system that allows periodic monitoring of the tightness of gas pipelines and the condition of their surroundings. The system consists of a measurement subsystem – a manned helicopter with an infrared spectroradiometer and a visible light camera, and an IT subsystem – a computing server with software for processing recorded data, including hyperspectral data. In terms of integrating the measurement system with the helicopter, a special suspension was built to enable safe use of the hyperspectral camera, and cables were made to enable uninterrupted data exchange between the camera and the control and measurement system installed in the helicopter cabin. The suspension was tested during flight tests in terms of vibrations transmitted from the helicopter's propulsion system to the spectroradiometer measurement system. The analysis carried out in the frequency and time domain of acceleration, velocity and displacement signals confirmed the correctness of the suspension design. In further tests, it was decided to verify the technical readiness of the measurement system. For this purpose, various flight routes were marked, taking into account the limitations of the optical path of the spectroradiometer, software was configured taking into account various data recording modes, and then flights were made over an experimental station built especially for the project, allowing the simulation of above-ground and underground methane leaks from the gas infrastructure. Multiple data recordings in the infrared and visible light ranges allowed collecting research material necessary to verify the technical readiness of the measurement system, the correct operation of the experimental station and the developed computational algorithms. The IT subsystem consisting of integrated calculation modules is currently being developed. It makes it possible to process hyperspectral data in the field of methane detection and quantification, and process visible light images in the field of classification of prohibited objects in the vicinity of gas pipelines. In the next stage, the modules intended to process the data recorded by the hyperspectral camera will be integrated into a functional IT system.
EN
Measurement of methane emissions from leaks occurring on the territorially extensive network of transmission gas grid is a topical issue and highly desirable from the point of view of safety and reducing methane emissions into the atmosphere. Remote detection of methane is a problem whose technical solution is based on several types of optoelectronic devices, e.g. thermal imaging cameras with sets of optical filters, spectroradiometers, laser systems of the DIAL (DIfferential Absorption Lidar) type. On the other hand, the quantification of emission magnitudes is in most cases realized by spectoradiometric systems. This paper will present a method for analyzing hyperspectral data from an imaging Fourier infrared spectroradiometer. Measurements will be made on a purpose-built bench simulating methane emissions from a transmission network. Data obtained from ground level under different atmospheric conditions will be presented, together with the results of their analysis for different methane emissions.
PL
Pomiar emisji metanu z wycieków występujących na rozległej terytorialnie sieci gazociągów przesyłowych jest zagadnieniem aktualnym i wysoce pożądanym z punktu widzenia bezpieczeństwa i ograniczenia emisji metanu do atmosfery. Zdalna detekcja metanu jest problem, którego rozwiązanie techniczne opiera się na kilku typach urządzeń optoelektronicznych, np. kamerach termowizyjnych z zestawami filtrów optycznych kamery termowizyjne z zestawami filtrów optycznych, spektroradiometry, systemy laserowe DIAL (DIfferential Absorption Lidar). Z drugiej strony, kwantyfikacja wielkości emisji jest w większości przypadków realizowana przez systemy spektroradiometryczne. W niniejszym artykule zostanie przedstawiona metoda analizy danych hiperspektralnych z obrazującego fourierowskiego spektroradiometru podczerwieni. Pomiary zostały wykonane na specjalnie zbudowanym stanowisku symulującym emisję metanu z sieci przesyłowej. Dane uzyskane z poziomu gruntu w różnych warunkach atmosferycznych, wraz z wynikami ich analizy dla różnych emisji metanu.
PL
Celem realizowanego projektu badawczo-rozwojowego jest opracowanie bezinwazyjnego systemu pozwalającego na okresowe monitorowanie szczelności gazociągów i ich otoczenia. Definiując obszar badań, który związany jest z rozległą terytorialnie siecią gazociągów przesyłowych, w projekcie przyjęto założenie, że zadanie będzie realizowane przez system składający się z podsystemu pomiarowego, którym będzie śmigłowiec załogowy z zamontowanym spektroradiometrem podczerwieni, oraz z podsystemu informatycznego, którym będzie serwer obliczeniowy z zainstalowanym oprogramowaniem do przetwarzania zarejestrowanych danych hiperspektralnych. Spektroradiometr podczerwieni wraz ze specjalistycznym oprogramowaniem do wykrywania metanu będą umieszczone na podwieszanej pod śmigłowcem platformie stabilizacyjnej. Z kolei podsystem naziemny będzie się składał m.in. z: modułu do zarządzania i przechowywania danych z nalotów inspekcyjnych, modułu do przetwarzania danych w zakresie detekcji metanu, modułu do przetwarzania danych w zakresie monitorowania innych zagrożeń potencjalnie występujących w rejonach gazociągów przesyłowych oraz modułu przeznaczonego do generowania raportów z inspekcji. Specjalnie na potrzeby projektu zostanie zbudowane stanowisko doświadczalne pozwalające na symulowanie nieszczelności gazociągu, co będzie niezbędne do przeprowadzenia badań weryfikacyjnych realizowanych przez platformę powietrzną.
EN
The aim of the research and development project is to develop a non-invasive system to periodically monitor the integrity of gas pipelines and their surroundings. By defining the research area, which is related to the territorially extensive network of transmission gas pipelines, it has been assumed in the project that the task will be carried out by a system consisting of: measurement subsystem, which will be a manned helicopter with a mounted infrared spectroradiometer and information subsystem, which will be a computing server with installed software for processing the recorded hyperspectral data. The infrared spectroradiometer with specialized software for methane detection will be placed on a stabilization platform suspended under the helicopter. The ground subsystem will consist of: module for managing and storing data from inspection flights, module for processing data on methane detection, module for processing data on monitoring other hazards potentially occurring in the region of transmission pipelines and module for generating inspection reports. Especially for the project, an experimental stand will be built to simulate a gas pipeline leak, which will be necessary to carry out verification tests carried out by the air platform.
4
Content available Wodór jako element transformacji energetycznej
PL
W publikacji zaprezentowano dostępne i perspektywiczne procesy pozyskiwania i oczyszczania wodoru w odniesieniu do planowanych strategicznych zmian rynku wodoru. W związku z koniecznością wprowadzania zmian związanych z ograniczaniem użytkowania paliw kopalnych na rzecz zastąpienia ich mniej emisyjnymi źródłami energii, głównie odnawialnymi (OZE), nieodzowne będą zmiany zarówno w skali, jak i sposobie wykorzystania wodoru. Dokumenty strategiczne tworzone w tym obszarze pokazują, że w perspektywie lat 2025–2030 nastąpi zwiększenie wykorzystania wodoru jako paliwa transportowego (m.in. w transporcie samochodowym, ciężkim kołowym i kolejowym). Rozważane są również zmiany polegające na wykorzystaniu wodoru pochodzącego ze źródeł odnawialnych w obszarze budownictwa i energetyki, a także wytwarzania ciepła technologicznego. Perspektywy zwiększenia zapotrzebowania na wodór pochodzący z OZE powodują konieczność rozwoju nowych lub niszowych obecnie metod jego wytwarzania oraz separacji i oczyszczania. W artykule przeprowadzono analizę dostępnych metod wytwarzania i oczyszczania wodoru, która wykazała, że wodór w skali przemysłowej produkowany jest najczęściej z paliw kopalnych w procesach reformingu parowego i autotermicznego oraz częściowego utlenienia. Natomiast wodór z odnawialnych źródeł energii otrzymywany jest w procesie elektrolizy oraz w procesach biologicznych i termicznych. Wydajność pozyskiwania wodoru w znanych obecnie procesach jest zróżnicowana (0,06–80%). Także skład pozyskiwanej mieszaniny gazowej jest różny i w związku z tym zachodzi konieczność dobrania metod separacji i oczyszczania wodoru nie tylko w zależności od wymagań podczas jego dalszego zastosowania, ale również w zależności od składu mieszaniny poreakcyjnej zawierającej wodór. Do oczyszczania wodoru w skali przemysłowej najczęściej stosowane są technologie adsorpcji zmiennociśnieniowej (PSA), które pozwalają na pozyskanie wodoru o czystości nawet do 99,99%. Jeśli oczekiwana czystość nie przekracza 95%, istnieje możliwość zastosowania metody destylacji kriogenicznej. Trzecia grupa metod separacji i oczyszczania wodoru to technologie membranowe, stosowane od dawna m.in. do oczyszczania gazów. Do oczyszczania i separacji wodoru najczęściej stosowane są membrany polimerowe, metaliczne lub elektrolityczne.
EN
The publication presents the available and prospective processes for obtaining and purifying hydrogen in relation to the planned strategic changes in the hydrogen market. Due to the necessity to introduce changes related to the limitation of the use of fossil fuels in order to replace them with less emitting energy sources, mainly renewable ones (RES), changes in both the scale and the manner of using hydrogen will be indispensable. Strategic documents developed in this area indicate that in the 2025–2030 perspective, the use of hydrogen as a transport fuel will increase (e.g. in car, heavy road and rail transport). Changes involving the use of hydrogen from renewable sources in the fields of construction and energy as well the generation of process heat, are also considered. The prospects for increasing the demand for hydrogen from renewable energy sources generate the need to develop new or niche methods of its production, separation and purification. The article analyzes the available methods for the production and purification of hydrogen, which showed that hydrogen is produced on an industrial scale mostly from fossil fuels in the processes of steam and autothermal reforming and partial oxidation. On the other hand, hydrogen from renewable energy sources is obtained in the electrolysis process as well as in biological and thermal processes. The hydrogen recovery efficiency in the currently known processes varies (0.06–80%). The composition of the obtained gas mixture is also different, and therefore it is necessary to select the methods of hydrogen separation and purification depending not only on the requirements for its further use, but also on the composition of the hydrogen-containing post-reaction mixture. For the purification of hydrogen on an industrial scale, the most commonly used technology is pressure swing adsorption (PSA), which allows to obtain hydrogen with a purity of up to 99.99%. If the expected purity does not exceed 95%, it is possible to use the cryogenic distillation method. The third group of hydrogen separation and purification methods are membrane technologies, which have long been used for gas purification, among other things. Polymer, metallic or electrolytic membranes are most often used for hydrogen purification and separation.
PL
Wejście w życie strategii metanowej, której podstawowym celem jest ograniczenie emisji metanu do atmosfery, oznacza dla sektora gazowego duże wyzwanie. Obecnie Komisja Europejska aktywnie promuje wdrażanie ram pomiaru i raportowania opracowanych przez Partnerstwo w zakresie metanu w sektorze ropy naftowej i gazu (OGMP). W podejściu tym współczynniki emisji metanu dla poszczególnych źródeł emisji powinny być wyznaczane na podstawie pomiarów bezpośrednich. W artykule przedstawiono wyniki pracy badawczej, której celem było wyznaczenie aktualnych współczynników emisji metanu dla stacji pomiarowych znajdujących się w polskim systemie przesyłowym gazu ziemnego. Pierwszym etapem pracy był wybór kryteriów stacji pomiarowych wchodzących w skład systemu przesyłowego pod kątem parametrów, które mogą mieć wpływ na wielkość emisji metanu. W kolejnym etapie pracy na wybranych obiektach przeprowadzono kontrolę szczelności oraz pomiary wielkości emisji metanu. Na podstawie uzyskanych wyników badań wyznaczono również współczynniki emisji metanu w trzech wariantach. W wariancie 1 cała stacja pomiarowa została potraktowana jako pojedynczy obiekt. W pozostałych dwóch wariantach wyznaczono dwa komplety współczynników emisji metanu dla stacji pomiarowych z rozbiciem na poszczególne elementy stacji – na podstawie podziału zaproponowanego w OGMP 2.0 (wariant 2) oraz na podstawie podziału zaproponowanego przez INiG – PIB i GAZ-SYSTEM S.A. (wariant 3). Ostatnim etapem realizacji pracy było przeprowadzenie inwentaryzacji wielkości emisji metanu z łącznie 36 stacji pomiarowych (30 stacji badanych oraz 6 stacji, dla których dokonano analizy na podstawie dostępnych danych z użyciem współczynników emisji wyznaczonych dla każdego z rozpatrywanych trzech wariantów). Niezależnie od przyjętego sposobu wyliczania wielkości emisji metanu otrzymane wyniki inwentaryzacji różniły się między sobą o nie więcej niż 2%.
EN
The implementation of the methane strategy, the primary goal of which is to reduce methane emissions to the atmosphere, is a major challenge for the gas sector. The European Commission is currently actively promoting the implementation of the Measurement and Reporting Framework developed by the Oil and Gas Methane Partnership (OGMP). In this approach, the methane emission factors for individual emission sources should be determined on the basis of direct measurements. The article presents the results of the research work the aim of which was to determine the current methane emission factors for the measuring stations located in the Polish natural gas transmission system. The first stage of work was the selection of criteria of the measuring stations included in the system in terms of parameters that may affect the amount of methane emissions. In the next stage of work, the tightness control and methane emission measurements were carried out on selected objects. On the basis of the obtained test results, the methane emission factors were also determined in three variants. In Variant 1, the entire measuring station was treated as a single object. In the other two variants, two sets of methane emission factors were determined for measuring stations with a breakdown into individual station elements, based on the division proposed in OGMP 2.0 (Variant 2) and based on the division proposed by INiG – PIB and GAZ-SYSTEM S.A. (Variant 3). The last stage of the work was to carry out an inventory of methane emissions from a total of 36 measuring stations (30 surveyed stations and 6 stations for which an analysis was made on the basis of available data using the emission factors determined for each of the three variants under consideration). Regardless of the method of calculating the methane emission volume, the obtained results of the inventory differed by no more than 2%.
PL
W artykule przedstawiono wyniki badań jakości biogazu rolniczego produkowanego w Polsce. Uzyskane wyniki odniesiono do dostępnych danych publikowanych w tym zakresie w literaturze, zarówno krajowej, jak i światowej. Próbki oczyszczonego biogazu rolniczego pobrano do odpowiednich pojemników w 11 wybranych do badań biogazowniach, zachowując ich reprezentatywność w stosunku do wszystkich biogazowni rolniczych w Polsce. Wytypowane do badań biogazownie rolnicze stanowiły obiekty o zróżnicowanej wielkości, charakterystyce stosowanych substratów oraz różnym zakresie parametrów podlegających uzdatnieniu. W biogazowniach tych prowadzono głównie procesy osuszania i odsiarczania produkowanego biogazu rolniczego, a w przypadku jednej z biogazowni usuwane były również siloksany. Oznaczenie zawartości tlenku węgla(II), amoniaku oraz parametrów związanych z wilgotnością biogazu przeprowadzono na miejscu ze względu na możliwe zmiany składu gazu, wynikające z jego transportu. Pozostałe parametry jakościowe biogazu wyznaczono w laboratorium. W badanych próbkach biogazu rolniczego oznaczono zawartość takich substancji jak: wodór, azot, tlen, tlenek węgla(IV), metan, węglowodory C2–C5, siarkowodór, tiole (merkaptany), siloksany, alkohole (takie jak metanol, etanol oraz i-propanol), wybrane węglowodory jedno- oraz wielopierścieniowe, a także organiczne i nieorganiczne chlorki i fluorki. Badania zostały przeprowadzone głównie z wykorzystaniem metody chromatografii gazowej. Jedynie w przypadku oznaczania zawartości organicznych i nieorganicznych chlorków i fluorków wykorzystano metodę chromatografii jonowej, a w przypadku oznaczania wielopierścieniowych węglowodorów aromatycznych zastosowano metodę wysokosprawnej chromatografii cieczowej. Uzyskane wyniki badań wykazały, że zmienność składu biogazu rolniczego produkowanego w Polsce jest znacznie mniejsza niż opisywana w literaturze (zarówno krajowej, jak i światowej), co przyczynia się do stabilności jego parametrów energetycznych. Należy dodać, że oznaczona podczas badań zawartość zanieczyszczeń mogących występować w biogazach rolniczych była również znacznie niższa, niż podaje literatura.
EN
The article presents the results of research on the quality of agricultural biogas produced in Poland. The obtained results were compared to the available data published in this field in both domestic and world literature. Samples of purified agricultural biogas were collected in appropriate containers in 11 biogas plants selected for the research, maintaining their representativeness in relation to all agricultural biogas plants in Poland. The agricultural biogas plants selected for the research were objects of various sizes, characteristics of the substrates used and range of parameters to be treated. In these biogas plants, mainly the processes of drying and desulphurizing of the produced agricultural biogas were carried out, in the case of one of the biogas plants, siloxanes were also removed. The determination of the content of carbon monoxide(II), ammonia and the parameters related to biogas humidity was carried out on site due to possible changes in the gas composition resulting from its transport. The remaining quality parameters of biogas were determined in the laboratory. The contents of such substances as: hydrogen, nitrogen, oxygen, carbon monoxide(IV), methane, C2-C5 hydrocarbons, hydrogen sulfide, thiols (mercaptans), siloxanes, alcohols (such as methanol, ethanol and i-propanol), selected monocyclic and polycyclic hydrocarbons were determined in the tested samples of agricultural biogas, as well as organic and inorganic chlorides and fluorides. The research was mainly carried out using the gas chromatography method. Only in the case of determining the content of organic and inorganic chlorides and fluorides the ion chromatography method was used, and in the case of determination of polycyclic aromatic hydrocarbons the method of high-performance liquid chromatography was used. The obtained research results showed that the variability of the composition of agricultural biogas produced in Poland is much lower than that described in the literature (both domestic and global), which contributes to the stability of its energy parameters. It should be added that the content of pollutants that may be present in agricultural biogas determined during the research was also much lower than that provided in the literature data published in this field.
PL
Biogaz stanowi alternatywę energetyczną dla konwencjonalnych paliw gazowych. Wzrost produkcji tego gazu oraz zwiększenie wykorzystania potencjału sektora biogazowego w Polsce może mieć znaczący wkład w zwiększenie bezpieczeństwa energetycznego kraju poprzez dywersyfikację źródeł energii. W niniejszym artykule skoncentrowano się wyłącznie na biogazie rolniczym i przedstawiono najnowsze dane dotyczące m.in. liczby biogazowni rolniczych oraz rocznej wydajności instalacji do wytwarzania tego gazu. Warto zauważyć, że liczba biogazowni rolniczych w Polsce systematycznie wzrasta. Na początku roku 2021 było ich 116, na koniec 2021 roku w rejestrze wytwórców biogazu rolniczego KOWR wpisanych było już 128 instalacji biogazowych, natomiast aktualna na koniec 2022 roku liczba biogazowni rolniczych wynosi 141. Wzrost liczby instalacji biogazowych pociąga za sobą wzrost możliwości produkcji tego gazu. Instalacje zarejestrowane na koniec 2021 roku pozwalały na wytworzenie ponad 513 mln m3 biogazu rolniczego rocznie. Obecnie sumaryczna roczna wydajność instalacji biogazowych pozwala na wytworzenie ponad 569 mln m3 biogazu rolniczego. Wszystkie zarejestrowane w Polsce biogazownie rolnicze wykorzystują produkowany biogaz do wytwarzania ciepła i energii elektrycznej w skojarzeniu. Sumaryczna moc zainstalowana elektryczna wszystkich biogazowni rolniczych na koniec 2022 roku wynosi 139,5 MWe. W artykule przedstawiono również wyniki analiz w zakresie stosowanych w Polsce substratów do produkcji biogazu rolniczego oraz metod jego oczyszczania, a także wpływu użytej metody oczyszczania na jakość, parametry fizykochemiczne oraz możliwość wykorzystania powstającego gazu. Do produkcji biogazu rolniczego w większości stosowana jest biomasa roślinna w połączeniu z inną biomasą oraz ewentualnie kiszonka. Wykorzystywane w biogazowniach rolniczych procesy oczyszczania biogazu to przede wszystkim odsiarczanie i osuszanie. Przeprowadzone badania pokazały również, że parametry energetyczne biogazów rolniczych pochodzących z różnych biogazowni charakteryzują się niewielkim zróżnicowaniem, co jest istotne ze względu na fakt, że stabilność parametrów energetycznych biogazu stanowi ważny czynnik wpływający na możliwość jego efektywnego wykorzystania.
EN
Biogas is an energy alternative to conventional gaseous fuels. Increasing the production of agricultural biogas and increasing the use of the potential of the biogas sector in Poland may significantly contribute to increasing the country's energy security through the diversification of energy sources. This article focuses exclusively on agricultural biogas and presents the latest data on, inter alia, the number of agricultural biogas plants and the annual capacity of the installation for producing this gas. It is worth noting that the number of agricultural biogas plants in Poland is systematically increasing. At the beginning of 2021 there were 116 agricultural biogas plants, at the end of 2021, 128 biogas installations were entered in the KOWR register of agricultural biogas producers, while the current number of agricultural biogas plants at the end of 2022 is 141. The increase in the number of biogas installations entails an increase in the possibility of producing this gas. Installations registered at the end of 2021 allowed for the production of over 513 million m3 of agricultural biogas per year. Currently, the total annual capacity of biogas installations allows for the production of over 569 million m3 of agricultural biogas. All agricultural biogas plants registered in Poland use the produced biogas to generate heat and electricity in combination. The total installed electric capacity of all agricultural biogas plants at the end of 2022 is 139.5 MWe. The article also presents the results of analyzes of the substrates used in Poland for the production of agricultural biogas and methods of its purification, as well as the impact of the treatment method used on the quality, physicochemical parameters and the possibility of using the generated gas. For the production of agricultural biogas, mostly plant biomass is used in combination with other biomass, and possibly silage. The biogas purification processes used in agricultural biogas plants are primarily desulphurization and drying. The conducted research also showed that the energy parameters of agricultural biogas from different biogas plants are characterized by little differentiation, which is important due to the fact that the stability of the energy parameters of biogas is an important factor influencing the possibility of its effective use.
PL
Liczba metanowa jest istotnym parametrem charakteryzującym paliwa silnikowe. Wartość liczby metanowej określa podatność paliwa na spalanie stukowe, przy czym im wartość ta jest większa, tym większa jest odporność paliwa na spalanie stukowe. Gaz ziemny należący do grupy H powinien charakteryzować się minimalną liczbą metanową powyżej 65 (PN-EN 16726:2018). W doniesieniach literaturowych dominuje z kolei pogląd, że ze względu na efektywność pracy silnika oraz niską emisję szkodliwych substancji optymalna wartość liczby metanowej dla gazów spalanych w silnikach samochodowych zasilanych gazem CNG lub LNG powinna wynosić powyżej 80. W dobie dążenia do ograniczenia zużycia i zastępowania paliw kopalnych odnawialnymi źródłami energii (OZE) istotne jest sprawdzenie, jak duży wpływ na wartość liczby metanowej gazu ziemnego będzie miało dodanie do niego wodoru, który od kilku już lat znajduje się w centrum uwagi jako doskonały nośnik energii i tzw. czyste paliwo i dla którego przyjęto zerową wartość liczby metanowej. W artykule omówiono wpływ dodatku wodoru do gazu ziemnego na wartość liczby metanowej powstającej mieszaniny, w odniesieniu do minimalnej i optymalnej wartości liczby metanowej. Podczas analizy wykorzystano dane dotyczące 19 różnych składów gazu ziemnego, charakteryzujące gaz ziemny należący do grupy E pochodzący z polskiej sieci dystrybucyjnej. Wyniki przeprowadzonych obliczeń pozwalają stwierdzić, że dodanie wodoru do gazu ziemnego, w ilości pozwalającej na zachowanie parametrów fizykochemicznych gazu określonych w odpowiednich normach, powoduje obniżenie wartości liczby metanowej powstałej mieszaniny gaz ziemny–wodór maksymalnie o 22,1%. Należy dodać, że w żadnym z analizowanych przypadków uzyskana wartość liczby metanowej nie była niższa niż wartość minimalna wynosząca 65. W odniesieniu z kolei do optymalnej wartości liczby metanowej dla paliw gazowych można stwierdzić, że dodatek wodoru do gazu ziemnego, z zachowaniem przyjętych założeń w zakresie parametrów energetycznych i gęstości gazu, może powodować zwiększenie właściwości stukowych powstałej mieszaniny i przyczyniać się do tego, że nie będzie ona optymalnym paliwem. Przeprowadzone obliczenia i analizy wykazały także, że zmiana wartości liczby metanowej mieszaniny gaz ziemny–wodór jest proporcjonalna w stosunku do ilości wodoru wprowadzonego do gazu ziemnego.
EN
: The methane number is an important parameter characterizing motor fuels. The value of the methane number determines the fuel susceptibility to knocking combustion, and the higher its value, the greater the fuel resistance to knocking combustion. Natural gas belonging to the H group should have a minimum methane number above 65 (PN-EN 16726:2018). The dominant view in the literature is that the optimal value of the methane number for gases burned in CNG or LNG fueled car engines should be above 80 due to the efficiency of the engine operation and low emission of harmful substances. In the era of striving to reduce the consumption of fossil fuels and replace them with renewable energy sources (RES), it is important to check how significantly will the hydrogen addition impact the methane number value of natural gas. It is essential because hydrogen has been in the spotlight for several years now as an excellent energy carrier and the so-called clean fuel, and for zero methane number was assumed. The article discusses the effect of hydrogen addition to natural gas on the value of the methane number of the resulting mixture in relation to the minimum and optimal value of the methane number. Data on 19 different compositions of natural gas were used to perform the analysis. They characterized natural gas belonging to group E from the Polish distribution network. The results of the calculations carried out allow us to state that the addition of hydrogen to natural gas, in an amount allowing to maintain the physicochemical parameters of the gas specified in the relevant standards, causes a decrease in the value of the methane number of the resulting natural gas-hydrogen mixture by a maximum of 22.1%. However, in none of the analyzed cases the obtained methane number was lower than the minimum value of 65. With regard to the optimal methane number value for gaseous fuels, it can be concluded that the addition of hydrogen to natural gas (while maintaining the adopted assumptions regarding energy parameters and gas density) can increase the knocking properties of the resulting mixture and make it not an optimal fuel. The performed calculations and analyzes also showed that the change in the methane number value of the natural gas-hydrogen mixture is proportional to the amount of hydrogen introduced into natural gas.
PL
W artykule skupiono uwagę na problemie zanieczyszczenia powietrza, określanego mianem smogu, które według Światowej Organizacji Zdrowia (WHO) jest przyczyną śmierci 4,2 mln osób rocznie. W Europie problem smogu szczególnie dotyczy Polski – zgodnie z danymi WHO wśród 50 najbardziej zanieczyszczonych smogiem miast europejskich aż 33 znajdują się w Polsce. W trosce o zdrowie mieszkańców polskie prawo dało władzom samorządowym możliwość wprowadzania uchwał antysmogowych. Na tej podstawie uchwały takie podjęto w 11 województwach. Uchwały antysmogowe koncentrują się w głównej mierze na ograniczaniu emisji pyłów z sektora komunalno-bytowego. Według danych Krajowego Ośrodka Bilansowania i Zarządzania Emisjami sektor ten odpowiada za około 49% emisji pyłów do atmosfery w Polsce. Również władze Małopolski w latach 2016 (dla miasta Krakowa) i 2017 (dla pozostałego obszaru) podjęły uchwały antysmogowe. Należy dodać, że działania w ramach realizacji programów ochrony powietrza w Małopolsce realizowano już znacznie wcześniej. W latach 2013–2018 na obszarze Małopolski zlikwidowano 43,6 tys. kotłów i pieców wykorzystujących paliwa stałe, w tym 22,5 tys. w samym Krakowie. W artykule przeanalizowano zmiany jakości powietrza na terenie Małopolski w latach 2012– 2020. Podczas analizy danych skoncentrowano się na pięciu podstawowych zanieczyszczeniach wchodzących w skład smogu (tj. pyły PM10 oraz PM2,5, tlenki azotu, ditlenek siarki i tlenek węgla) oraz odczytach ośmiu stacji monitorowania jakości powietrza (trzy stacje zlokalizowane w Krakowie oraz pięć stacji poza Krakowem). Głównym celem analizy było wykazanie, czy podejmowane w Małopolsce działania prowadzą do poprawy jakości powietrza. W tym celu analizie poddano zarówno zmiany występujące w średnich dobowych i średnich rocznych stężeniach zanieczyszczeń odnotowywanych przez poszczególne stacje pomiarowe, jak i zmiany w liczbie dni w sezonie grzewczym, w których odnotowywane były przekroczenia wartości dopuszczalnych. Analiza dostępnych danych pomiarowych za lata 2012–2020 wyraźnie pokazała, że występują zanieczyszczenia, dla których dopuszczalna zawartość w powietrzu jest wielokrotnie przekraczana w ciągu roku na terenie całego województwa. Przy czym w analizowanym okresie zauważalne są trendy spadkowe w odnotowywanych stężeniach poszczególnych zanieczyszczeń w powietrzu, co świadczy o tym, że podejmowane w województwie małopolskim działania w zakresie poprawy jakości powietrza przynoszą powoli efekty.
EN
The article focuses on the problem of air pollution, which is referred to as smog, which, according to the WHO, causes the death of 4.2 million people annually. In Europe, the problem of smog particularly affects Poland, according to WHO data, among the 50 most polluted European cities, as many as 33 are in Poland. Out of concern for the health of the residents, Polish law has given local authorities the opportunity to introduce anti-smog resolutions. Anti-smog resolutions focus mainly on reducing dust emissions from the municipal and housing sector, and according to the data of the National Centre for Balancing and Emissions Management, it is responsible for approximately 49% of dust emissions into the atmosphere in Poland. Małopolska also adopted anti-smog resolutions in 2016 (for the city of Kraków) and 2017 (for the remaining area of the voivodeship). Nevertheless, actions under the implementation of air protection programs in Małopolska have been undertaken much earlier. In the years 2013–2018, 43.6 thousand boilers and stoves using solid fuels were decommissioned in Małopolska, including 22.5 thousand in Kraków alone. The article analyzes the changes in air quality in Małopolska in the years 2012–2020. The data analysis focused on five basic pollutants included in smog (i.e. PM10 and PM2.5 dust, nitrogen oxides, sulfur dioxide and carbon monoxide) and the readings of 8 air quality monitoring stations (3 located in the city of Krakow and 5 stations located outside Krakow). The main purpose of the analysis was to show whether the measures taken in Małopolska lead to the improvement of air quality. For this purpose, both changes in daily average and annual average pollutant concentrations recorded by individual measurement stations, as well as changes in the number of days in the heating season in which the limit values were exceeded were analyzed. The analysis of the available measurement data for the years 2012–2020 clearly showed that there are pollutants for which the permissible content in the air is exceeded many times a year throughout the voivodeship. At the same time, in the analyzed period, there are noticeable decreasing trends in the observed concentrations of individual pollutants in the air, which proves that the measures taken in Małopolska to improve air quality are slowly bringing results.
10
PL
W niniejszym artykule przedstawiono zagadnienia związane z prowadzeniem oceny jakości mieszanin gaz ziemny-wodór, powstałych w wyniku zatłaczania wodoru do sieci gazu ziemnego. Na podstawie obowiązujących w Polsce aktów prawnych określono maksymalną zawartość wodoru w mieszaninie z gazem ziemnym. W artykule przeanalizowano również jaki wpływ ma wodór zawarty w mieszaninie na prowadzenie analiz składu gazu oraz obliczenia parametrów fizykochemicznych gazu.
EN
This article presents issues related to the assessment of the quality of natural gas and hydrogen mixtures resulting from hydrogen injection into the natural gas network. The maximum hydrogen content in the mixture with natural gas has been determined on the basis of the law in force in Poland. The article also analyzes the influence of hydrogen contained in the mixture on the gas composition analysis and the calculation of physicochemical parameters of the gas.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.