Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Spatially fractionated radiation therapy (SFRT) refers to the delivery of a single large dose of radiation within the target volume in a heterogeneous pattern using either a custom GRID block, multileaf collimators, and virtual methods such as helical tomotherapy or synchrotron-based microbeams. The potential impact of this technique on the regression of bulky deep-seated tumors that do not respond well to conventional radiotherapy has been remarkable. To date, a large number of patients have been treated using the SFRT techniques. However, there are yet many technical and medical challenges that have limited their routine use to a handful of clinics, most commonly for palliative intent. There is also a poor understanding of the biological mechanisms underlying the clinical efficacy of this approach. In this article, the methods of SFRT delivery together with its potential biological mechanisms are presented. Furthermore, technical challenges and clinical achievements along with the radiobiological models used to evaluate the efficacy and safety of SFRT are highlighted.
EN
Introduction: Since the CT operators play an important role in the diagnosis and treatment of diseases and exposing the patients to radiation exposure, they must be aware of all CT parameters which affect the image quality and patient dose and update their knowledge in parallel with the progresses in CT technology. Therefore, the knowledge of radiographers and CT technologists regarding the CT parameters was assessed in this study to identify and resolve any potential deficiencies. Material and methods: This study was conducted in 2018 among 113 radiographers and 103 CT technologists in Khuzestan province using a three-part questionnaire containing demographic characteristics, general opinion on CT scan dose and questions assessing technologists’ knowledge of CT exposure parameters. Data were analyzed using SPSS software. Results: Total knowledge scores of radiographers and CT technologists about CT exposure parameters were 36 and 42, respectively. The highest knowledge score among technologist was the knowledge of changing parameters based on patient characteristics and the lowest was in the field of awareness of noise index and diagnostic reference levels. Conclusion: Total knowledge scores of radiographers and CT technologists about different scan parameters affecting dose and image quality was very low. Reviewing and updating the content of academic education and holding retraining courses are suggested.
EN
Molecular imaging techniques using nanoparticles have significant potential to be widely used for the detection of various types of cancers. Nowadays, there has been an increased focus on developing novel nanoprobes as molecular imaging contrast enhancement agents in nanobiomedicine. The purpose of this review article is to summarize the use of a variety of nanoprobes and their current achievements in accurate cancer imaging and effective treatment. Nanoprobes are rapidly becoming potential tools for cancer diagnosis by using novel molecular imaging modalities such as Ultrasound (US) imaging, Computerized Tomography (CT), Single Photon Emission Tomography (SPECT) and Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and Optical Imaging. These imaging modalities may facilitate earlier and more accurate diagnosis and staging the most of cancers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.