Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The nature and mechanism of interaction between carboxymethyl cellulose (CMC) with cassiterite (and chlorite surfaces) and their effects on the flotation separation process of cassiterite (from chlorite) were investigated by micro-flotation tests, surface adsorption experiments, zeta potential measurements, solution chemical calculation, infrared spectroscopy, and X-ray photo-electron spectroscopy (XPS). The results from single mineral tests revealed that CMC exhibited good selective inhibition effects with cassiterites and chlorites. When the dosage was 12.5 mg/L at pH 8, cassiterite and chlorite recovery was 92.2% and 6.3%, respectively. The artificial mixed ore test revealed that the flotation separation effect was the best when the dosage of CMC was 6.5 mg/L. Cassiterite used during the studies was 75.1% pure. The recovery was 82.8%. The interaction between CMC and the cassiterite surface led to a shift in the zeta potential toward the negative direction. CMC was weakly adsorbed on the cassiterite surface. There was no significant impact on the subsequent collection of sodium oleate. The concentration of C atom increased post interaction, and the potential shifted toward the negative direction. Characteristic CMC peaks were observed at this point. Hydrogen bonds and weak chemisorption interactions between CMC and chlorite affected the interaction between sodium oleate and the chlorite surface. It also affected the flotation results. The cassiterite and chlorite were separated effectively.
EN
To make clear the feasibility and influence factors of diesel fuel autothermal reforming to hydrogen, PdCeCr-FeCu/Al2O3 catalyst was prepared by equivalent-volume impregnation method. Experimental facility based on an adiabatic tubular reactor with preheating section was designed and set up, the behaviors of diesel reforming to hydrogen with straight-run diesel as a raw material according to the analysis of the components were studied. Diesel oil reforming over a catalyst for hydrogen production was analyzed using an adiabatic tubular reactor with a preheating section that was designed and built in-house. The operating conditions were optimized. Under the suitable operating conditions, viz., catalyst bed inlet temperature of 700°C, diesel liquid space velocity of 0.24 h–1, water-carbon ratio of 20, and oxygen-carbon ratio of 0.6, the hydrogen yield reached 28.3 (mol/mol).
EN
A uniform is distinctive clothing worn by members of the same firm or organisation. In China, the market for professional garments is extremely large. However, as mandatory professional clothing, uniforms are frequently used, torn, and replaced, leading to textile waste. Further, the use of non-recyclable or non-biodegradable fabrics is bound to create greater environmental pressure. This study focuses on the textile material in the uniform market to analyse the motivational conditions behind sustainable fabric consumption. A total of 294 usable online surveys were obtained in 2019. Multi-item scales were adopted to measure five variables: corporate public image, corporate ethics, employee social status, environment awareness, and sustainable premium. Structural equation modelling was applied to test the hypothesises. Results reveal that the improvement of an employee's social status can effectively facilitate the probability of utilising eco-friendly fabrics. This study can thus help increase the usage of eco-friendly fabric in China’s uniform market.
PL
Uniform to charakterystyczna odzież noszona przez członków tej samej firmy lub organizacji. W Chinach rynek odzieży profesjonalnej jest niezwykle duży. Jednak, jako obowiązkowa odzież zawodowa, uniformy są często używane i wymieniane, co prowadzi do marnotrawstwa tekstyliów. Ponadto stosowanie nienadających się do recyklingu lub nieulegających biodegradacji tkanin może powodować większą presję na środowisko. W badaniu skoncentrowano się na materiale tekstylnym na rynku jednolitym, przeanalizowano motywacyjne warunki stojące za zrównoważoną konsumpcją tkanin. W 2019 roku uzyskano łącznie 294 użytecznych ankiet on-line. Do pomiaru pięciu zmiennych: wizerunku publicznego firmy, etyki korporacyjnej, statusu społecznego pracowników, świadomości środowiskowej i zrównoważonej składki zostały przyjęte skale wielopozycyjne. Do testowania hipotez zastosowano modelowanie równań strukturalnych. Wyniki pokazały, że poprawa statusu społecznego pracownika może skutecznie zwiększyć prawdopodobieństwo używania tkanin przyjaznych dla środowiska. Badanie to może zatem pomóc w zwiększeniu wykorzystania tkanin przyjaznych dla środowiska na jednolitym rynku Chin.
EN
In this study, the effect of MnCl2 on scheelite flotation with sodium oleate (NaOL) as a collector and sodium silicate as a depressant was assessed by a combination of flotation experiments, Fouriertransform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and solution chemistry. The flotation experiments confirmed that the addition of MnCl2 before sodium silicate showed an adverse effect on flotation and the recovery of scheelite gradually decreased as the amount of MnCl2 was increased. When MnCl2 was added afte r sodium silicate, the recovery of scheelite gradually increased with an increase in the amount of MnCl2. The results of FTIR, XPS, and solution chemistry indicated that MnCl2 acted on the surface of scheelite in the form of manganese ions. When MnCl2 was added before sodium silicate, manganese ions adsorbed on the surface of scheelite reacted with sodium silicate to form a hydrophilic silicate, which covers the surface of scheelite and blocks the adsorption of NaOL. However, when MnCl2 was added after sodium silicate, manganese ions are continued to be adsorbed on the surface of scheelite, which increases the cations on the surface of scheelite, and hence the condition becomes conducive for the interaction between scheelite and NaOL.
EN
The effect of particle size on flotation performance of hematite and quartz was investigated. Microflotation, X-ray photoelectron spectroscopy analysis, reagent adsorption measurements, and collision and attachment probability calculation between particle and bubble were conducted in this investigation. The results showed that the floatability of minerals with different particle size fractions was different, which was mainly related to surface bonding site, reagent adsorption, collision probability and entrainment. The quartz with different particle size had little impact on hematite recovery, but -45 μm fraction negatively affected Fe grade of concentrate both in the direct and reverse flotation of hematite. In the direct flotation, the Fe grade in froth product dropped off due to the fine quartz entrainment. While in the reverse flotation, the Fe grade in sink product dropped off as a result of difficulty in floating fine quartz particles, which was due to lower collision probability. Meanwhile, in the reverse flotation, the presence of hematite fines (-18 μm fraction) also had negative impact on hematite recovery because of fine particle entrainment.
EN
Electro-optic (EO) polymers, possessing high EO coefficient and low dielectric constant, are considered to be a new generation of nonlinear optical materials that have great application prospect in photo-communication, information storage, and data processing. The host-guest structure of EO polymers is the most typical one in this field. However, the phase separation during polarization between the host polymer and the guest nonlinear optical molecule (NLO) limits potential applications of the material. To solve the problem, a new synthetic method was designed in this paper. First, 2,4-dinitroaniline was grafted to phenol polyphosphazene by chemical method for polar improvement of the main chain. Then, another small NLO molecule was mixed into the polymer by physical method for further improvement of EO coefficient. The preparation process was studied and the structure of the product was characterized. The effects of different NLO mixing proportions and different polarizing temperatures on EO coefficient were investigated in details. Orientation stability of the sample was tested. Experimental results show that our products possess not only high EO coefficient but also good phase stability, which makes them good candidates for the application in information technology.
EN
Q235 steel is widely used in engineering and construction. Therefore, it is important to identify the damage mechanism and the acoustic emission (AE) response of the material to ensure the safety of structures. In this study, an AE monitor system and an in situ tensile test with an optical microscope were used to investigate the AE response and insight into the damage process of Q235 steel. The surface of the specimen was polished and etched before the test in order to improve the quality of micrographs. Two kinds of AE responses, namely a burst and a continuous signal, were recorded by the AE monitor system during the test. Based on the in situ test, it was observed that the damage of Q235 steel was induced by the crystal slip and the inclusion fracture. Since the crystal slip was an ongoing process, continuous AE signals were produced, while burst AE signals were possibly produced by the inclusion fracture which occurred suddenly with released higher energy. In addition, a great number of AE signals with high amplitude were observed during the yielding stage and then the number and amplitude decreased.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.