Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In marine environments where biofouling occurs and has an impact on the maritime economy and environment, compounds that inhibit the attachment, growth and survival of microorganisms in a biofilm complex as well as settlement of larvae are considered potential antifouling compounds. In this study, the extracellular metabolites from two surface- associated bacteria isolated from soft coral and macroalga were evaluated for antibiofilm and antisettlement activity. The bacteria were identified using 16S rRNA gene sequencing, and the culture supernatant extract of each strain was evaluated for antibiofilm activity. The compounds present in the extracts were analysed using GC-MS. The two bacterial strains were identified as Bacillus licheniformis MBR1 and Vibrio alginolyticus MBR4 for the isolates from soft coral and macroalgae, respectively. The extracts inhibited the growth of biofilm-forming bacteria, biofilm formation and barnacle larval settlement. The GC-MS analysis of the extract detected the presence of compounds such as tetrapentacontane, octadecanoic acid, 2,3-dihydroxypropyl ester, hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester and 17-pentatriacontene. The results of the study show that extracellular metabolites of the bacteria associated with marine organisms could be used as natural antifouling compounds to control biofouling.
EN
Heavy metals are major stressors for benthic macroalgal communities in marine ecosystems. In this study, the effects of copper and cadmium on some physiological parameters along with antifouling defense of the marine macroalga Ulva reticulata were assessed under laboratory conditions. Macroalgal samples were treated with three concentrations (1 mg l−1, 3 mg l−1 and 5 mg l−1) of copper and cadmium for 2 and 7 days. After treatment, algal samples were analyzed for chlorophyll-a, carotenoid, total polyphenol and total antioxidant capacity. Also, algal extracts were tested against biofilm-forming bacteria strains to understand differences in antifouling activity. The results indicated that exposure of U. reticulata to copper and cadmium, on the one hand, induced protective mechanisms such as total phenol production and antioxidant capacity against metal stress and, on the other hand, reduced photosynthesis. While the extract obtained from control algal samples showed a strong inhibitory effect on the growth of biofilm-forming bacteria, treatment with heavy metals resulted in reduced antibiofilm activity. In general, the results revealed that exposure of macroalgae to heavy metals can affect antifouling defense traits in addition to changes in photosynthetic pigment content.
EN
The solitary ascidian Phallusia nigra is commonly found on hard substrates along the Jeddah coastal waters of the central Red Sea. In this study, the recruitment pattern of P. nigra on artificial substrates was assessed in relation to their type, surface color and orientation. The results showed a higher recruitment rate of the ascidian species on concrete and dark panels. The abundance of the ascidian on test panels varied between the four seasons. The orientation (vertical or horizontal) of the panels did not show any major difference in the recruitment. Significant effects of light intensityon the recruitment of P. nigra were observed on test panels, with higher abundance on panels submerged in the shade. In conclusion, this study clearly indicates the importance of the type and color of substrates in the recruitment of ascidians on artificial materials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.