To obtain anti-corrosive thermo-diffusion zinc coatings, the authors use highly effective zinc saturating mixtures. This technology makes it possible to obtain coatings with a high zinc content in the δ-phase as well as a zinc-rich phase of FeZn13 (ζ-phase) on the coating surface. As a result of long-term studies into the corrosion properties of thermo-diffusion zinc (TDZ) coatings conducted by the authors, a number of features of their corrosive behavior have been established. The corrosion rate of those coatings in desalted and chloride-containing media is lower than those of galvanic or hot-dip zinc coatings. The corrosion behavior depends on the content of zinc on the surface and the texture features of the coating. The results showed that on the surface of thermo-diffusion coatings in the corrosion on media containing chloride ions, zinc hydroxychloride (simonkolleite - Zn5Cl2[OH]8[H2O]) has been formed. Compared to coatings obtained by other methods, the rate of simonkolleite formation was higher on TDZ coatings, which might have a positive effect on their resistance in aggressive atmospheres.
This work focuses on the modeling, simulation and control of particle size distribution (PSD) during nanoparticle growth with the simultaneous chemical reaction, nucleation, condensation, coagulation and convective transport in a high temperature reactor. Firstly, a model known as population balance model was derived. This model describes the formation of particles via nucleation and growth. Mass and energy balances in the reactor were presented in order to study the effect of particle size distribution for each reaction mechanisms on the reactor dynamics, as well as the evolution of the concentrations of species and temperature of the continuous phase. The models were simulated to see whether the reduced population balance can be used to control the particle size distribution in the high temperature reactor. The simulation results from the above model demonstrated that the reduced population balance can be effectively used to control the PSD. The proposed method "which is the application of reduced population balance model" shows that there is some dependence of the average particle diameter on the wall temperature and the model can thus be used as a basis to synthesize a feedback controller where the manipulated variable is the wall temperature of the reactor and the control variable is the average particle diameter at the outlet of the reactor. The influence of disturbances on the average particle diameter was investigated and controlled to its new desired set point which is 1400nm using the proportional-integral-derivative controllers (PID controllers). The proposed model was used to control nanoparticle size distribution at the outlet of the reactor.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.