Purpose: In this study, an environmentally friendly metal matrix was prepared, and the influence of eggshell powder and CaCO3 particles on the tensile strength and hardness of recycled aluminium were assessed. Design/methodology/approach: A matrix made of recycled aluminium was employed. Calcium carbonate and eggshells served as the study's reinforcing materials. Separately, weight percentages of 2, 4, and 8% of eggshell and calcium carbonate were used. The samples were made by sand-casting. Findings: The results showed that both eggshell and calcium carbonate positively affect the hardness, yield, and ultimate tensile strength of recycled aluminium. The hardness values were improved as the percentage of the eggshell increased. The maximum hardness was achieved at 2% calcium carbonate. Similarly, the highest improvement of yield strength was for 2% CaCO3 addition, while the highest tensile strength was obtained at 8% eggshell addition. Research limitations/implications: To get better results, it would be desirable to use finer eggshells than those utilized in this study. Practical implications: Composites made with an aluminium matrix exhibit exceptional mechanical and physical characteristics. The most challenging obstacle to overcome is the cost of metal matrix composites. Eggshells are a by-product that could be employed as a lightweight, affordable form of reinforcement. One way to get rid of this by-product, improve composite characteristics, and lower the cost of aluminium composite is to use eggshells. Originality/value: A comparative investigation was carried out to determine the effects of adding agricultural by-product eggshell, and commercial CaCO3 reinforcement material on the characteristics of recycled aluminium matrix integrated 425 µm sized eggshell and CaCO3 separately as a reinforcement material to create a metal matrix that is beneficial to the environment.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.