Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this research cyanide-free leaching of pure gold and pressure oxidized refractory gold concentrate by thiosulfate-copper-ammonia solutions were examined. A quartz crystal microbalance (QCM) was used to study gold leaching as a factorial series where the best gold leaching rate (2.987 mg/(cm2∙h)) was achieved with a solution consisting of 0.2 M (NH4)2S2O3, 1.2 M NH3, 0.01 M CuSO4 and 0.4 M Na2SO4. Temperature had the greatest effect on the gold leaching rate. An increase in thiosulfate concentration (0.1–0.2 M) increased gold dissolution. The combined effect of temperature and ammonia concentration had a statistically significant effect on the gold leaching rate at 0.1 M M2S2O3. Combination of applied potential and NH3:S2O3 ratio had a statistically significant effect on the gold leaching rate at 0.2 M M2S2O3. An increase in applied potential decreased the gold dissolution rate at low ammonia concentrations but increased it at high concentrations. A pressure oxidized gold concentrate was leached for 6 hours in the batch reactor leaching experiments. The effect of rotative velocity (1.26–1.56 m/s) and slurry density (10–30 wt%) was investigated at the following leaching parameters: 0.2 M Na2S2O3, 0.6 M NH3, 0.01 M CuSO4, 0.4 M Na2SO4. Lower slurry density (10 wt%) resulted in a higher Au leaching efficiency. An increase in the rotation rate did not have an effect on the final Au leaching recovery. The best Au leaching efficiency (89%) was achieved with 590 rpm mixing, 1.56 m/s rotative velocity and 10 wt% slurry density.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.