Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Melted zones, microcracks, shear bands, and elastic incompatibility of explosively welded materials are features that may initialize cracks at the interface and reduce fatigue strength. This study aims to determine the effect of interfacial defect-like structures on the fatigue strength of explosively welded corrosion-resistant plates. Cyclic axial loading was applied to seven distinct layer-by-layer compositions of Ti Gr 1, Zr 700 alloys, and carbon steels. The interfacial wave height as a metric of potential fatigue life influencing factors along with measured strain amplitude was applied as the input quantities for the Machine Learning based model, i.e. the Gaussian process for regression (GPR). This is a novel and successful application of GPR to estimate the effect of interfacial wave height on the fatigue life of explosively welded plates. For the first time, the effect of the interface feature on fatigue life was estimated quantitatively. The Digital Image Correlation technique was applied to measure the field of cyclic strain for the purpose of verifying if a single strain amplitude is representative of a heterostructured plate. It was found that interfacial wave height is an important feature and its increase by 100 µm reduces the fatigue life of analysed plates by 36%. Additionally, to validate the applicability of explosively welded plates to engineering structures under cyclic loading, the experimental fatigue lives were compared with the design curve of the American Society of Mechanical Engineers (ASME) code.
EN
Initiation and evolution of fatigue cracks at the interfaces in three-layer Zr–Ti/Zr–Steel composites is herein examined by in situ optical microscopy for the first time. Specimens cut out from three composite plates comprising Zr 700, Ti Gr. 1, and P265GH steel layers have been subjected to uniaxial fatigue cyclic loading. It is found that mechanical property mismatch between layers and defects at the interfaces can reduce the fatigue life of composite plates. An insight into the evolution of cracks initiated at the interfaces reveals that (1) most of the cracks grow into adjacent layers along two distinct planes, and (2) these cracks could lead to the fatigue failure of composites. One of these planes coincides with the adiabatic shear band orientation found in Ti Gr. 1 and Zr 700 layers. The interfaces in multilayer metallic composite could have excellent fatigue strength depending on their structural properties.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.