Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: Research and development of modern medical implants is complex and demanding process focused on fulfilling requirements regarding materials, machining technologies and functionality. Typical example of modern medical implant is elbow nail for fixation of Caput radii fractures. It could be manufactured with classical machining technologies and with advanced Rapid Prototyping technologies such as highly targeted metal deposition technology LENS (Laser Engineered Net Shaping). Design/methodology/approach: Development of modern medical implants is a multi-stage design and manufacturing process primarily based on computer aided design (CAD), computer simulations, machinability of certificated biomaterials, in-vitro biofunctionality and in-vivo tests. Findings: LENS technology enables rapid and agile manufacturing, improved design flexibility, repair and re-manufacture. Material built with LENS technology has equal or even better mechanical and material properties. In medical application LENS technology enables development and rapid prototyping of special surgical instruments, trauma and orthopaedic high-performance implants which are hollow and thin walled. Research limitations/implications: To confirm assumption regarding better material and mechanical properties of products made with LENS technology additional static, dynamic (the High-Cycle-Fatigue test) and material (porosity and microstructure) tests will be carried out in the near future. Practical implications: Three different designs of bone fixation nail prototype made of titanium alloy had been manufactured with conventional machining techniques where some disadvantages due to the technology had been identified. To solve those problems LENS technology had been applied. As fourth design hollow thin walled fixation bone nail prototype made of titanium alloy powder (grain size 45 micrometers) had been manufactured and tested. Originality/value: Paper presents case study where LENS technology is being applied to manufacture modern medical implants. Particular focus of the paper is on material quality and quality benefits obtained in current and future medical application.
2
Content available remote Improvements of medical implants based on modern materials and new technologies
EN
Purpose: Modern medical implants are products with pretentious requirements regarding materials, machining technologies and their functionality. In general they are divided into two main groups which are permanent and temporary medical implants. To improve implant's performance in the working environment one of the main goals of research and development process is to improve implant's biofunctionality, biocompatibility, corrosion resistance, bioadhesion, processability and availability. Design/methodology/approach: Development of modern medical implants is a multi-stage design and manufacturing process primarily based on computer design, computer numerical simulations and in-vitro tests. Findings: Some improvements could be done with reverse engineering technology which generates a numerical model from the workpiece in order to get a replica or geometric variant for the scanned data. Practical implications: The surgical treatments of bone fractures (osteosynthesis) are divided into external fracture fixation or internal fracture fixation. One of the most common used medical implant for internal fracture fixation is bone fixation plate which holds together the bone fragments. In some cases the improved shape of the plate could results into better biofunctionality and bioadhesion. Originality/value: In this contribution few examples of machining technologies based on CAD-CAM principle, modern materials and research/development process of modern medical implants is presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.