Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available High kinetic energy dense plasma jet
EN
Researches on the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak are presented. A novel source of dense plasma with high directed velocity is designed, constructed and investigated. This is a double stage system consisting of an intense source utilizing titanium-hydride grains for neutral gas production and a conventional pulsed coaxial accelerator. Optimization of the accelerator parameters, so as to achieve a maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is performed. The calculations are compared with the experiment. A test bed is used for investigation of the intense plasma jet generated by a plasma gun. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density etc., were measured. Plasma jets with densities of up to 1022 m 3, total numbers of accelerated particles (1 5) . 1019, and flow velocities of 50 100 km/s were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed a deep jet penetration and a fast density rise (<0.5 ms) at all spatial points up to the radius r H 0.3a. The injection did not result in plasma degradation.
EN
The pulsed heating of the interface between a solid and a liquid leads to the excitation of acoustic interface waves. These interface waves are detected at a variable distance from the generation region by means of a beam deflection setup. By evaluating the amplitude and phase spectra (using a Fast Fourier transform) of two wave pulses at two different source-receiver distances, the velocity of propagation and the attenuation of the interface waves are measured as a function of frequency (bandwidth of 50 MHz). By fitting these experimentally determined results to theory it is possible to determine the acoustic properties of the liquid as a function of frequency.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.