Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
As it is commonly known, heat exchangers are widely used in power generators equipment. The biggest disadvantage of conventional heat exchangers is that, in case of the energy load variation, it must be replaced by the one of different size. The aim of this work is to specify a method of combining micro channel heat exchangers into a grid, realising different powers. It was ment to specify the most accurate micro channel heat exchangers connection, in order to increase the intensity of the heat exchange process. Studied problem was about heating the ORC working medium (R134a) using waste heat (hot water). In this paper, there has been studied the fenomenon of the heat exchange process in the micro channel heat exchanger grid, which will be further called the integral heat exchanger. There have been studied three cases of micro channel heat exchangers connections, such as: parallel-parallel, parallel (heating water)-serial (R134a) and parallel (R134a) – serial (heating water). On the basis of the results of the analytical analysis it has been stated, that the serial (heating water)-parallel (R134a 7) micro channel heat exchangers combination is the most suitable for the most intensive heat exchange.
EN
In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.