Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote MBE-grown MCT hetero- and nanostructures for IR and THz detectors
EN
We present an overview of our technological achievements in the implementation of detector structures based on mercury cadmium telluride (MCT) heterostructures and nanostructures for IR and THz spectral ranges. We use a special MBE design set for the epitaxial layer growth on (013) GaAs substrates with ZnTe and CdTe buffer layers up to 3” in diameter with the precise ellipsometric monitoring in situ. The growth of MCT alloy heterostructures with the optimal composition distribution throughout the thickness allows the realization of different types of many-layered heterostructures and quantum wells to prepare the material for fabricating single- or dual-band IR and THz detectors. We also present the two-color broad-band bolometric detectors based on the epitaxial MCT layers that are sensitive in 150–300-GHz subterahertz and infrared ranges from 3 to 10μm, which operate at the ambient or liquid nitrogen temperatures as photoconductors, as well as the detectors based on planar HgTe quantum wells. The design and dimensions of THz detector antennas are optimized for reasonable detector sensitivity values. A special diffraction limited optical system for the detector testing was designed and manufactured. We represent here the THz images of objects hidden behind a plasterboard or foam plastic packaging, obtained at the radiation frequencies of 70, 140, and 275 GHz, respectively.
EN
A mathematical model for multi-element IR FPAs based on Hg1-xCdxTe photodiodes with direct-injection readout circuits is developed. This model was used to identify the main factors that limit the performance characteristics of thermography systems based on such FPAs.
3
Content available remote Linear HgCdTe IR FPA 288 × 4 with bidirectional scanning
EN
The long wavelength (8-12 μm) IR FPA 288×4 based on a hybrid assembly of n+-p diode photosensitive arrays (PA) of HgCdTe (MCT) MBE-grown structures and time delay integration (TDI) readout integrated circuits (ROIC) with bidirectional scanning have been developed, fabricated, and investigated. The p-type MCT structures were obtained by thermal annealing of as-grown n-type material in inert atmosphere. The MCT photosensitive layer with the composition 0.20-0.23 of mole fraction of CdTe was surrounded by the wide gap layers to decrease the recombination rate and surface leakage current. The diode arrays were fabricated by planar implantation of boron ions into p-MCT. The typical dark currents were about 4-7 nA at the reverse bias voltage of 150 mV. The differential resistance R was up to R₀ = 1.6×10⁷ Ω zero bias voltage, which corresponded to R₀A ∼70 Ω •cm² and to the maximal value Rmax = 2.1 × 10⁸ Ω. The bidirectional TDI deselecting ROIC was developed and fabricated by 1.0-μm CMOS technology with two metallic and two polysilicon layers. The IR FPAs were free of defect channels and have the average values of responsivity Sλ = 2.27×10⁸ V/W, the detectivity Dλ * = 2.13 × 10¹¹ cm × Hz½ × W⁻¹, and the noise equivalent temperature difference NETD = 9 mK.
EN
We have measured the current-voltage characteristics of the long-wavelength infrared (LWIR) photodiode array, formed on the epitaxial Hg₁₋xCdxTe film (x = 0.21-0.23) with a high concentration of the Shockley-Read-Hall centres, before and after irradiating it with fast neutrons (energy 1 MeV, dose 5×10¹³ cm⁻²) at room temperature. Residual changes in current-voltage characteristics, persisting after 20 days, have been identified. Model calculations indicate that the Shockley-Read-Hall centre concentration increases 2-4 times, and the carrier lifetime decreases 2-5 times after the irradiation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.