Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea
EN
A three-dimensional numerical model was applied to simulate the Black Sea Water (BSW) outflux and spreading over the North Aegean Sea, and its impact on circulation and stratification–mixing dynamics. Model results were validated against satellite-derived sea surface temperature and in-situ temperature and salinity profiles. Further, the model results were post-processed in terms of the potential energy anomaly, ϕ, analyzing the factors contributing to its change. It occurs that BSW contributes significantly on the Thracian Sea water column stratification, but its signal reduces in the rest of the North Aegean Sea. The BSW buoyancy flux contributed to the change of ϕ in the Thracian Sea by 1.23 × 10-3 W m-3 in the winter and 7.9 × 10-4 W m-3 in the summer, significantly higher than the corresponding solar heat flux contribution (1.41 × 10-5 W m-3 and 7.4 × 10-5 W m-3, respectively). Quantification of the ϕ-advective term crossing the north-western BSW branch (to the north of Lemnos Island), depicted a strong non-linear relation to the relative vorticity of Samothraki Anticyclone. Similar analysis for the south-western branch illustrated a relationship between the ϕ-advective term sign and the relative vorticity in the Sporades system. The ϕ-mixing term increases its significance under strong winds (> 15 m s-1), tending to destroy surface meso-scale eddies.
EN
Hydrographic data from the North Aegean Sea were used to examine the summer variability of surface water masses during the period 1998-2001. Attention was placed on the surface hydrographic features of the area, such as the Black Sea Water (BSW) plume expansion, the frontal characteristics of the BSW with the Levantine Intermediate Water (LIW) and the variability of submesoscale hydrographic features (such as the Samothraki Anticyclone). Strong southerly wind stresses were found responsible for relaxing the horizontal density gradients across the BSW-LIW frontal zone and displacing this front to the north of Lemnos Island, thus suppressing the Samothraki Anticyclone towards the Thracian Sea continental shelf. Under northerly winds, the BSW-LIW front returns to its regular position (south of Lemnos Island), thus allowing the horizontal expansion of the Samothraki gyre up to the Athos Peninsula. Present results indicate the importance of medium-term wind stress effects on the generation of Samothraki Anticyclone suppression/expansion events.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.