Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With the increasing standard of living, the energy consumption increases as well. So, waste production, like wastewater, increases as well too. But, there is a possibility to combine energy production and wastewater treatment. Technical device that can accomplish this task is a microbial fuel cell. In microbial fuel cells activated sludge bacteria can be used for electricity production during wastewater treatment. One of the problems of this solution is a low current density obtained in microbial fuel cells. Nonetheless, it is possible to increase the current density by using the catalyst for electrodes. The possibility of wastewater treatment using the Ni-Co alloy as cathode catalyst for microbial fuel cells is presented in this paper. The measurements included a preparation of catalyst and comparison of changes in the concentration of COD, NH* and N03 in the reactor with aeration and with using a microbial fuel cell (with Ni-Co cathode). The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (0.26 mA/cm2) and amount of energy (0.94 Wh) obtained in reactor (151) are low. But, the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in microbial fuel cells.
PL
Wraz ze wzrostem poziomu życia wzrasta zarówno zużycie energii, jak i ilość ścieków. Istnieje jednak możliwość produkcji energii z jednoczesnym oczyszczaniem ścieków. Urządzeniem, które może zrealizować to zadanie jest mikrobiologiczne ogniwo paliwowe. W ogniwach tego typu bakterie osadu czynnego wykorzystane są do produkcji energii podczas oczyszczania ścieków, jednym z ograniczeń tego rozwiązania jest niska gęstość uzyskiwanego prądu. Możliwe jest jednak podwyższenie tego parametru przy wykorzystaniu odpowiedniego katalizatora elektrod. W artykule przedstawiono możliwość wykorzystania stopu Ni-Co jako katalizatora katody. Badania obejmowały przygotowanie elektrody oraz porównanie zmian stężenia ChZT, NHt' oraz N03 w reaktorze z napowietrzaniem i przy wykorzystaniu mikrobiologicznego ogniwa paliwowego (z katodą Ni-Co). Czas redukcji ChZT przy wykorzystaniu mikrobiologicznego ogniwa paliwowego jest porównywalny z czasem uzyskanym podczas napowietrzania. Gęstość prądu (0,26 mA/cm2) i ilość energii (0,94 Wh) uzyskanej w reaktorze (15 I) jest niska, jednak rozwiązanie to pozwala na eliminację ko¬nieczności napowietrzania reaktora. Wykazano więc możliwość wykorzystania stopu Ni-Co jako katalizatora katody w mikrobiologicznym ogniwie paliwowym.
EN
With the increasing standard of living, energy consumption increases as well. So, waste production, including wastewater, increases as well. One of the types of wastewater is wastewater from yeast industry. Wastewater from this industry has not only a high pollutants load but it is produced in great amounts as well. Technical devices that can accomplish the wastewater treatment and electricity production from wastewater is a microbial fuel cell. In microbial fuel cells activated sludge bacteria can be used for electricity production during wastewater treatment. The possibility of using the Cu-B alloy as cathode catalyst for microbial fuel cells to wastewater treatment of wastewater from yeast industry is presented in this paper. The reduction time for COD with the use of microbial fuel cell with the Cu-B catalyst (with 5, 10 and 15% amount of B) is similar to the reduction time with aeration. The obtained power (4.1 mW) and the amount of energy (0.93 Wh) are low. But, if one can accept a longer COD reduction time, the obtained amount of energy will allow elimination of the energy needed for reactor aeration.
3
EN
Providing more and more energy is an essential task of today's energetic industry. In the last few years, addition to traditional methods of energy production, alternative energy sources have been fast developing. One of the devices that can use these sources is fuel cell. The fuel cells can be a power source of future mainly due to their high efficiency, low influence on environment and possibility of powering with different fuels. Most often fuel cells are powered by hydrogen. However, problems with the problems with its cheap production and storage are the reason for the search of new fuels for fuel cells. But it must be a fuel that will provide zero or low emission level. One of these fuels can be vegetable oil. The paper presents measurements of electrooxidation of coconut oil emulsion on a smooth platinum electrode in an aqueous solution of KOH. Electrochemical measurements were performed in a glass cell with AMEL System 5000 potentiostat. The obtained maximum current density is equal 25 mA/cm2. So, a fundamental possibility of using the coconut oil as fuel for fuel cell. But is necessary to keep the temperature of process above 303K.
PL
Technologią, która wykorzystuje ścieki jako surowiec, zapewniając jednocześnie ich oczyszczanie oraz produkcję prądu, jest technologia mikrobiologicznych ogniw paliwowych. Technologia ta postrzegana jest jako wspomaganie tradycyjnego oczyszczania ścieków. Jednym z podstawowych problemów związanych z mikrobiologicznymi ogniwami paliwowymi jest niewielka ilość produkowanej energii elektrycznej. Gęstość prądu zależy od szybkości zarówno reakcji anodowych, jak i katodowych. Celem pracy było wykazanie możliwości wykorzystania stopu Ni-Co jako katalizatora elektrody tlenowej w jednokomorowym mikrobiologicznym ogniwie paliwowym. Badania objęły pomiary szybkości rozkładu H2O2 na analizowanym katalizatorze, mocy ogniwa i gęstości prądu oraz redukcji stężenia ChZT. Podczas pracy ogniwa w porównywalnym czasie uzyskano taką samą skuteczność redukcji ChZT (90%) jak w przypadku napowietrzania. W ogniwie uzyskano 13 mW mocy oraz gęstość prądu 0,21 mA/cm2. Wykazano możliwość wykorzystania stopu Ni-Co jako katalizatora elektrody tlenowej w jednokomorowym mikrobiologicznym ogniwie paliwowym.
EN
Technology of microbial fuel cells allowing for the direct production of electricity from biodegradable materials can provide only energy production, but also wastewater treatment. This technology is seen as supporting of the traditional wastewater treatment. One of the problems with microbial fuel cells is a low current density of those energy sources. Nonetheless, it is possible to increase the current density by using the catalyst for electrodes (anode and cathode). The possibility of wastewater treatment using the Ni-Co alloy as catalyst for single chamber microbial fuel cells is presented in this paper. The studies have included measurements of H2O2 reduction on Ni-Co catalyst, power of cell and current density and also COD reduction. The reduction time for COD with the use of single chamber microbial fuel cell with Ni-Co cathode is similar to the reduction time with aeration. In analysed cell was obtained cell power of 13 mW, and current density of 0,21 mA/cm2. The possibility of using the Ni-Co alloy as catalyst for cathode of single chamber microbial fuel cells is presented in this paper.
5
Content available Ogniwo paliwowe zasilane emulsją oleju rzepakowego
PL
W pracy przedstawiono badania nad możliwością wykorzystania oleju rzepakowego jako substancji czynnej do zasilania ogniwa paliwowego. W tym celu zbudowano testowe ogniwo paliwowe. Ogniwo zasilano emulsją oleju rzepakowego. Jako detergent zastosowano Syntanol DS-10. Wykorzystano anodę z katalizatorem platynowym oraz katodę z katalizatorem Ni-Co. Pomiary przeprowadzono w temperaturze 293–333K. Maksymalna uzyskana gęstość prądu wynosiła 2 mA/cm2, natomiast maksymalna moc ogniwa 21 mW (dla temp. 333K). Wykazano, więc możliwość bezpośredniego dostarczania oleju rzepakowego (w formie emulsji) na anodę. Uzyskana moc ogniwa była stosunkowo niska, jednak istnieje możliwość zbudowania ogniwa paliwowego zasilanego olejem rzepakowym.
EN
The paper presents possibility of using canola oil as an active substance to fuel cell powering. A prototype fuel cell was built for this purpose. The cell was powered with canola oil emulsion. Syntanol DS-10 was utilized as a detergent. The mesh electrode with Pt catalyst served as an anode, whereas the mesh electrode with Ni-Co catalyst was used as a cathode. The measurements were conducted in the temperature range of 293–333K. The maximum current density reached the level of 2 mA/cm2, while the maximum power reached the level of 21 mW (at temp. 333K). Therefore, it was shown that canola oil (in emulsion form) the can be delivery directly to the anode. Although the obtained power is low, it is possible to build a fuel cell powered with canola oil.
PL
Wzrost poziomu życia powoduje wzrost zużycia energii oraz ilości generowanych odpadów i ścieków. Możliwość jednoczesnego oczyszczania ścieków i produkcji energii elektrycznej zapewniają mikrobiologiczne ogniwa paliwowe. Praca przedstawia możliwość oczyszczania ścieków w mikrobiologicznym ogniwie paliwowym z katodą Ni-Co i katolitem KMnO4. Pomiary obejmowały zmiany stężeń ChZT, NH4+ oraz NO3- w reaktorze bez napowietrzania, z napowietrzaniem oraz przy wykorzystaniu mikrobiologicznego ogniwa paliwowego z katodą Ni-Co i katolitem KMnO4. Czas redukcji ChZT podczas napowietrzania i wykorzystania mikrobiologicznego ogniwa paliwowego jest porównywalny. Wykazano zatem możliwość wykorzystania katody Ni-Co (w katolicie KMnO4) mikrobiologicznego ogniwa paliwowego do oczyszczania ścieków. Niestety rozwiązanie to wymaga stałego dostarczania katolitu. W analizowanym ogniwie uzyskano 15 mW mocy oraz gęstość prądu na poziomie 0,23 mA/cm2.
EN
The improving standard of living causes the increases in energy consumption and waste or wastewater production. The possibility of combining wastewater treatment and electricity production can be accomplished by means of a microbial fuel cell. The possibility of wastewater treatment using the Ni-Co alloy as cathode catalyst with KMnO4 catholyte for microbial fuel cells was presented in this paper. The measurements covered the comparison of changes in the concentration of COD, NH4+ and NO3- in the reactor without aeration, with aeration and using a microbial fuel cell (with Ni-Co cathode and KMnO4 catholyte). The reduction time for COD using a microbial fuel cell with the Ni-Co catalyst (and KMnO4 catholyte) is similar to the reduction time with aeration. It has been shown that the Ni-Co (with KMnO4 catholyte) can be used as cathode catalyst in microbial fuel cells. Unfortunately, in this case a constant delivery of catholyte is needed. The cell power of 15 mW and current density of 0.23 mA/cm2 were obtained in the analysed MFC.
PL
W pracy przedstawiono badania nad możliwością wykorzystania odpadowego syntetycznego oleju silnikowego do bezpośredniego wytwarzania energii elektrycznej. Pomiary przeprowadzono w zakresie temperatur 293–333 K. Obejmowały one elektroutlenianie emulsji odpadowego (zużytego) syntetycznego oleju silnikowego na elektrodzie platynowej w wodnym roztworze H2SO4. Do wytworzenia emulsji wykorzystano niejonowy środek powierzchniowo czynny Syntanol DS-10. Maksymalna uzyskana gęstość prądu wyniosła 22 mA/cm2 (dla temp. 333 K). Wykazano więc, że istnieje możliwość bezpośredniego wytwarzania prądu elektrycznego z odpadowego syntetycznego oleju silnikowego, a więc zasilania nim ogniw paliwowych.
EN
The paper presents possibility of using used synthetic engine oil to direct electricity production. The measurements conducted in the temperature range 293–333 K. Were measured electrooxidation of used synthetic engine oil emulsion on a smooth platinum electrode in an aqueous solution of H2SO4. The emulsion prepared on the basis of a nonionic surfactant Syntanol DS-10. The maximum current density reached the level of 22 mA/cm2 (temp. 333 K). Measurements shows possibility of direct electricity production from used synthetic engine oil emulsion, so powering fuel cell of this oil.
EN
The increasing of standard living causes the increases energy consumption and waste or wastewater production. The possibility to combine wastewater treatment and electricity production can accomplish a microbial fuel cell. The possibility of wastewater treatment using the Cu-B catalyst with KMnO4 catholyte for microbial fuel cells is presented in this paper. The measurements covered comparison of changes in the concentration of COD, NH4+ and NO3 - in the reactor without aeration, with aeration and with using a microbial fuel cell (with Cu-B cathode and KMnO4 catholyte). The reduction time for COD with the use of microbial fuel cell with the Cu-B catalyst (and KMnO4 catholyte) is similar to the reduction time with aeration. It has been shown that the Cu-B (with KMnO4 catholyte) can be used as cathode catalyst in microbial fuel cells. Unfortunately in this case is needed to constant delivery of catholyte.
EN
As fuel for fuel cells can be used various substances, but generally fuel cells are powered by hydrogen. However, problems with the storage of hydrogen are the reason for the search of new fuels for fuel cells. Moreover, annually are produced huge amount of waste oils. These oils must be directed to purification and processing. It would be important to use waste engine oil as fuel for fuel cell to direct electricity production without intermediate stage e.g. combustion. The paper presents the possibility of using waste engine oil as fuel for fuel cell. The oil does not have the feature of electrical conductivity, for this reason a detergent was used for dissolving oil in an electrolyte. So, the work shows possible electrooxidation of waste engine oil (Turdus 15W40 from agriculture machinery) emulsion on a platinum electrode in an aqueous solution of H2SO4. Researches were done by the method of polarizing curves of electrooxidation of waste engine oil emulsion in glass vessel, on a smooth platinum electrode with potentiostat. In any case, the process of electrooxidation of waste engine oil emulsion occurred. A current density of about 6-20 mA/cm2 was obtained for all concentrations of waste engine oil. The highest results of the potential were obtained at temperature of 333K (25 mA/cm2 ). A fundamental possibility of electrooxidation of waste engine oil (Turdus 15W40) emulsion on platinum smooth electrode in acid electrolyte (aqueous solution of H2SO4) was presented in this paper. The obtained current density and power of glass fuel cell is low, but it was demonstrated a fundamental possibility of electricity production in fuel cell powering with waste engine oil.
PL
Stały rozwój gospodarczy państw generuje znaczne ilości odpadów, przy jednoczesnym wysokim zapotrzebowaniu na energie elektryczną. Technologią, która potencjalnie mogłaby połączyć wykorzystanie odpadów wraz z produkcją energii jest technologia ogniw paliwowych. Ogniwa takie przetwarzają energię paliwa bezpośrednio w energię elektryczną z pominięciem procesu spalania paliwa. Niektóre substancje odpadowe mogłyby stanowić dla nich potencjalne paliwo. Oleje roślinne (również odpadowe) stanowią obecnie alternatywę dla oleju napędowego. Powinny więc również stanowić alternatywę dla paliw do zasilania ogniw paliwowych. Autorzy starają się w pracy przedstawić nowy kierunek zagospodarowania odpadowego oleju rzepakowego w sposób bezpośredni z pominięciem procesu spalania. Praca przedstawia elektroutlenianie oleju rzepakowego na gładkiej elektrodzie platynowej w wodnym roztworze H2SO4. Jako pośrednik, pozwalający na uzyskanie emulsji dodawanej do elektrolitu, wykorzystano Syntanol DS-10. Pomiarów dokonano w reaktorze szklanym sprzężonym z potencjostatem. Uzyskana gęstość prądu wyniosła 10 mA/cm2 . Wykazano, więc możliwość zasilania ogniwa paliwowego zużytym olejem rzepakowym. W prototypowym ogniwie zasilanym takim olejem uzyskano 53 mW mocy.
EN
The constant economic development of countries generates significant amounts of waste, while at the same time high demand for electricity. The technology that could potentially combine waste utilization with energy production is fuel cell technology. Fuel cells convert fuel energy directly into electricity without intermediate stadium like fuel combustion process. Some waste substances could be a potential fuel for fuel cells. Vegetable oils (also waste) are now an alternative to diesel oil. These oils potentially can also be fuels for fuel cells. In paper the authors' try to present a new direction of using waste canola oil in a direct way, without combustion process. The paper presents measurements of electrooxidation of used canola oil emulsion prepared on the basis of a non-ionic surfactant on a smooth platinum electrode in an aqueous solution of H2SO4. The resulting current density reached the level of 10 mA/cm2 . So, the possibility of using used canola oil as fuel for fuel cells has been proved. Power was obtained in prototype fuel cell was obtained is equal 53 mW.
11
Content available Methanol electrooxidation with Cu-B catalyst
EN
In the last few years alternative energy sources have been fast developing. One of these sources is fuel cell. Due to development of the renewable energy sources, the powering of fuel cells with bio-fuels is very important. The one of this fuel is methanol. The use of fuel cells on a large scale is mainly limited by the high cost of catalysts - mainly platinum. Elimination of Pt as catalyst would allow for wider commercial application of fuel cells. The paper presents a study of methanol electrooxidation on electrode with Cu-B alloy catalyst. Researches were done by the method of polarizing curves of electrooxidation of methanol in glass vessel. An aqueous solution of KOH was used as the electrolyte. Conducted measurements show that there is a possibility of electrooxidation of methanol on Cu-B catalyst. In any case, the process of electrooxidation of methanol occurs. A current density of about 10-20 mA/cm2 has been obtained for all concentrations of methanol and B in alloy. So, the work shows possibility to use Cu-B alloys as catalysts for fuel electrode of DMFC.
12
EN
In recent decades the demand of energy has increased significantly. Providing more and more energy is an essential task of today’s energetic industry. In the last few years, addition to traditional methods of energy production, alternative energy sources have been developing fast. One of these sources is fuel cell, mainly due to their high efficiency. Generally fuel cells are powered by hydrogen. However, problems with the storage of hydrogen are the reason for the search of new fuels for fuel cells. Moreover, fuel cells can provide an additional/emergency electricity source in energy systems using combustion engines. So, it is important using the main fuel for powering the fuel cell. One of the fuels used for powering the fuel cells could be diesel fuel. Diesel engines drive cars, trucks, boats, tanks and also agricultural machinery e.g. tractors or harvesters. So, there are a lot the possibilities of using this solution. The paper presents results of measurements of electrooxidation of diesel fuel emulsion prepared on the basis of a nonionic surfactant on a smooth platinum electrode in an aqueous solution of KOH. The resulting current density reached the level of 25 mA/cm2 . So, the possibility of using diesel as the fuel for emergency of the fuel cells has been proved.
13
Content available remote Mikrobiologiczne ogniwo paliwowe z katodą Cu-B
PL
Elektrody w mikrobiologicznych ogniw paliwowych najczęściej wykonywane są z tkaniny węglowej, czasami z 1% dodatkiem platyny. Praca przedstawia analizę możliwości wykorzystania stopu Cu-B jako katalizatora katody. Metodyka obejmuje przygotowanie katalizatora, analizę jego aktywności w redukcji H2O2 oraz porównanie zmian stężenia ChZT, NH4+ oraz NO3 - podczas oczyszczania ścieków komunalnych w reaktorze z napowietrzaniem oraz przy wykorzystaniu mikrobiologicznego ogniwa paliwowego z katodą Cu-B. Czas redukcji ChZT przy wykorzystaniu mikrobiologicznego ogniwa paliwowego z katodą Cu-B jest zbliżony do czasu redukcji przy napowietrzaniu. Uzyskana w ogniwie gęstość prądu (0,21 mA/cm2) oraz ilość energii elektrycznej jest niewielka (0,87 Wh), jednak pomiary przeprowadzono w reaktorach o pojemności 15 l. Uzyskana ilość energii pozwala jednak na eliminację energii koniecznej do napowietrzania zbiorników. Badania wykazały, więc że istnieje możliwość wykorzystania stopu Cu-B jako katalizatora katody mikrobiologicznego ogniwa paliwowego.
EN
In microbial fuel cell as electrode are used carbon cloth (or carbon cloth with 1% Pt) electrodes are most common. The paper presents an analysis of the possibilities of using Cu-B alloy as cathode catalyst in microbial fuel cells. The measurements included a preparation of catalyst, analysis of its activity in reduction H2O2 and comparison of changes in the concentration of COD, NH4 + oraz NO3 - in the reactor with aeration and with using a microbial fuel cell (with Cu-B cathode). The reduction time for COD with the use of microbial fuel cell with the Cu-B catalyst is similar to the reduction time with aeration. The obtained current density (0.21 mA/cm2) and amount of energy are low (0.87 Wh), but this power was obtained in small reactor (15l). However, the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Cu-B can be used as cathode catalyst in microbial fuel cell.
EN
One of the problems with microbial fuel cells is a low current density of those energy sources. Nonetheless, it is possible to increase the current density by using the catalyst for fuel electrode (anode) - as long as a low cost catalyst can be found. The possibility of wastewater treatment using the Ni-Co alloy as catalyst for MFC’s is presented in this paper. The alloys were obtained with different concentrations of Co (15 and 50% of Co). The increase of current density with Ni-Co catalyst is approximately 0.1 mA/cm2. So, a fundamental possibility wastewater treatment using the Ni-Co alloy as catalyst for microbial fuel cells was presented.
PL
Jednym z ograniczeń w zastosowaniu mikrobiologicznych ogniw paliwowych jest niska gęstość prądu. Istnieje jednak możliwość podwyższenia tej wartości wykorzystując innego rodzaju katalizator elektrody paliwowej. Praca przedstawia możliwość oczyszczania ścieków za pomocą mikrobiologicznego ogniwa paliwowego z wykorzystaniem stopu Ni-Co jako katalizatora elektrody paliwowej. Do badań wykorzystano stopy Ni-Co o różnej koncentracji kobaltu (15 i 50%). Wykorzystując analizowany katalizator uzyskano wzrost gęstości prądu rzędu 0,1 mA/cm2. Wykazano więc możliwość wykorzystania stopu Ni-Co jako katalizatora mikrobiologicznego ogniwa paliwowego.
EN
Main parameters polluting of technological wastewater (dregs from decantation and thicken of the wort) from yeast industry are: nitrogen, potassium and COD. Such wastewater are utilized mostly on agricultural fields. Unfortunately, these fields can only accept a limited amount of wastes. The basic parameter limiting there the amount of wastewater is nitrogen. When capacity of the production is large sewages are often pretreated at an evaporator station. However, due to the fairly high running costs of the evaporator station currently such a solution is applied only to a small amount of wastes (just to meet legal requirements). Replacement of the earth gas with a biomass being supplied to the evaporator station from the agricultural fields will both allow to maintain the carbon dioxide emission level and enable the production growth. Moreover, the biomass growing on the agricultural fields being fertilized with the wastewater coming from the yeast production allows consequently to utilize the greater volume of wastewater. Theoretically, the possible increase in the yeasts production, with maintaining the carbon dioxide emission level, can reach even 70%. Therefore, the solution presented in this paper combines both intensification of the yeasts production and maintaining the carbon dioxide emission level.
PL
Głównymi parametrami technologicznych ścieków drożdżowych są azot, potas i ChZT. Ścieki te mogą być zagospodarowywane na polach rolniczego wykorzystania, jednak pola te mogą przyjąć tylko ograniczoną ich ilość. Podstawowym parametrem limitującym ilość ścieków kierowanych na pola jest azot. Z tego względu obniżenie stężenia tego parametru umożliwiłoby skierowanie na pola większej ilości ścieków, przy jednoczesnym spełnieniu norm. W analizowanym zakładzie instalacją redukującą poziom azotu w ściekach jest stacja wyparna. Jednak ze względu na wysokie koszty użytkowania tej instalacji, kierowana jest do niej tylko niewielka ilość najbardziej zanieczyszczonych ścieków. Zamiana gazu ziemnego, wykorzystywanego do wytworzenia pary zasilającej stację wyparną, na biomasę uprawianą na własnych polach rolniczego wykorzystania pozwoli na obniżenie kosztów użytkowania stacji wyparnej. Efektem czego będzie możliwość zwiększenia produkcji oraz utrzymanie poziomu emisji ditlenku węgla. Praca przedstawia rozwiązanie pozwalające na wzrost produkcji na poziomie 70%, przy utrzymaniu poziomu emisji ditlenku węgla.
PL
Technologia mikrobiologicznych ogniw paliwowych (MFC - microbial fuel cell), pozwalająca na bezpośrednią produkcję energii elektrycznej z surowców biodegradowalnych, może stanowić przyszłość nie tylko wytwarzania energii, ale także technologii oczyszczania ścieków. Istotną cechą tej technologii jest uzyskanie ogniw o bardzo niskich kosztach inwestycyjnych. W wysokowydajnych ogniwach paliwowych ze względu na znakomite własności katalityczne jako katalizator stosowana jest platyna. Ze względu na koszty w mikrobiologicznych ogniwach paliwowych najczęściej stosuje się elektrody węglowe lub węglowe z 1% udziałem Pt. Praca przedstawia analizę możliwości wykorzystania stali jako katalizatora elektrody paliwowej w mikrobiologicznych ogniwach paliwowych. Pomiary objęły porównanie zmian stężenia ChZT, NH+4 oraz NO-3 w reaktorze bez napowietrzania, z napowietrzaniem i przy wykorzystaniu mikrobiologicznego ogniwa paliwowego. Wykazano, że katalizator stalowy może stanowić alternatywę dla katalizatorów węglowych. Czas redukcji ChZT przy wykorzystaniu mikrobiologicznego ogniwa paliwowego z katalizatorem stalowym zbliżony jest do czasu redukcji przy napowietrzaniu. Charakterystyka krzywej dla napowietrzania jest jednak bardziej korzystna dla procesu oczyszczania ścieków. Uzyskiwana gęstość prądu wynosiła ok. 0,17 mA/cm2. Przeprowadzone pomiary wykazały, że mikrobiologiczne ogniwa paliwowe z katalizatorem stalowym mogą przyczynić się do rozwoju odnawialnych źródeł energii przy jednoczesnym wykorzystaniu ich do oczyszczania ścieków lub wspomagania ich oczyszczania.
EN
Technology of microbial fuel cells (MFC), allowing for the direct production of electricity from biodegradable materials can provide the future of not only energy production, but also wastewater treatment technologies. The fuel for microbial fuel cells can be every source of biodegradable organic matter. Furthermore, these cells can be easily scaled from centimetres to cubic meters. In addition, microbial fuel cells allow for their installation at the site of waste generation, and therefore reducing transport costs, while reducing the space occupied by the infrastructure used for the transfer, storage and disposal of waste. They can provide the acquisition of electricity enabling partial independence from the outside supplier. An important feature of this technology is to provide cells with very low investment costs. In high efficiency fuel cells - because of its excellent catalytic properties - platinum is used as the catalyst. Due to the costs of microbial fuel cells, carbon (or carbon with 1% of Pt) electrodes are most common. The paper presents an analysis of the possibilities of using stainless steel as the fuel electrode catalyst in microbial fuel cells. The most important parameters of microbial fuel cells are the efficiency of wastewater treatment and the current density. The element that can increase both these parameters is the use of a suitable catalyst for the anode. The catalyst should have high catalytic activity and low price. It is therefore necessary to search for materials that meet both of these criteria. The presented measurements include a comparison of changes in the concentration of CODCOD, NH+4 and NO-3 in the reactor without aeration, with aeration and with using a microbial fuel cell. It has been shown that the steel catalyst may be an alternative for carbon catalysts. The reduction time for COD with the use of microbial fuel cell with the steel catalyst is similar to the reduction time with aeration. However, the characteristics of the curve for aeration is more advantageous for the wastewater treatment process. The obtained current density was approx. 0.17 mA/cm2. The measurements showed that microbial fuel cells with steel catalyst may contribute to the development of renewable energy sources while being used for wastewater treatment plant or assisting their purification.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.