Let k be a positive integer and G = (V, E) be a graph. A vertex subset D of a graph G is called a perfect k-dominating set of G if every vertex v of G not in D is adjacent to exactly k vertices of D. The minimum cardinality of a perfect k -dominating set of G is the perfect k-domination number γkp (G ). In this paper, a sharp bound for γkp (T) is obtained where T is a tree.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.