Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
It is well known that yield strength and strain hardenin g of metals strongly depend on the grain size and on the purity of samples. However, the crystallographic texture also plays an important role in terms of describing the mechanical properties. Usually it is difficult to distinguish between all these contributions to the material behavior. If one wants to measure the effect of texture alone without being disturbed by different kind of effects, it is necessary just to change the texture and keep everything else constant. We here report tensile tests of high purity aluminum foils of two different thicknesses. In order to separate the influence of the texture from grain size and impurity effects, we have cut 99.999% purity aluminum foils either parallel or diagonal from identical sheets. Further, the sample preparation included a heat treatment for two hours at 550°C. Thereby, a pronounced cubic texture was obtained. Using a tolerance angle of 10° for the Euler angles, we obtained 30.6% cubic texture for 270 pm thick foils and 36.2% cubic texture for 540 un thick foils. Then tensile tests were performed, where the angle between the tensile direction and the rolling direction was either 0° or 45°. The latter samples showed a smaller flow stress at low strain but a higher ultimate tensile strength at the end. This result was nicely reproduced by the foils of either thickness. In the last experimental step, the texture of the deformed specimens was recorded. It was found that the texture evolution is clearly altered when the orientation of the samples is changed. Nevertheless, the deformed samples have in common that the orientations of the grains are spread over wide angles after the tensile tests. Finally, an attempt was made to interprete the measured flow stress with the Taylor model. According to this model the elongation of the sample is generated by five operating slip systems in any grain. Taylor used the minimum shear principle to select the five active slip systems among the 12 slip systems of the fcc geometry with respect to the orientation of the grains. The ratio of the overall shear of the active slip systems to the macroscopic strain of the sample is the so called Taylor factor. The average Taylor factor should be proportional to the measured flow stress at low strain. However, first calculations yield deviating results. A possible explanation for this discrepancy could be that the number of active slip systems is actually below five.
PL
Wiadomo, że umowna granica plastyczności i umocnienie odkształceniowe metali silnie zależą od wielkości ziarna i czystości próbek. Jednakże, tekstura krystalograficzna także odgrywa ważną rolę przy określeniu własności mechanicznych. Zwykle trudno jest rozróżnić wpływ wszystkich tych czynników na zachowanie materiału. Jeśli chce się zmierzyć efekt samej tekstury bez zakłócania przez inne rodzaje zjawisk, konieczne jest zmieniać właśnie teksturę, a pozostawić wszystkie inne czynniki stale. W pracy przedstawiamy próby rozciągania wysokiej czystości folii aluminiowych o dwóch grubościach. Aby oddzielić wpływ wielkości ziarna i zanieczyszczeń od efektu tekstury wycieto folię z aluminium o czystości 99.999% albo równolegle albo diagonalnie z identycznych arkuszy cienkich blach. Dalsze przygotowanie próbek obejmowalo obróbkę cieplną w 550°C. W ten sposób uzyskano wyraźną teksturę sześcienna. Stosując kątową tolerancję 10° dla katów Eulera otrzymaliśmy 31% tekstury sześciennej dla folii o grubości 270 um i 38% dla folii o grubości 540 um. Próby rozciągania wykonano przy dla katów pomiędzy kierunkiem rozciągania, a kierunkiem walcowania albo 0° albo 45°. Ostatnie próbki wykazały mniejszą wytrzymałość plastycznit przy niskim odksztalceniu, ale wyższą końcową wytrzymałość na rozciąganie. Ten wynik ściśgle powtórzył się dla każdej z grubości folii. W ostatnim etapie eksperymentu zbadano teksture odksztalconych próbek. Stwierdzono, że rozwój tekstury wyraźnie zmienia się kiedy zmienia się orientacja próbki. Niemniej jednak, wspólne dla odkształconych próbek było, że próbie rozciągania orientacje ziaren były rozmyte w szerokim zakresie kątowym. Na zakończenie, podjęto próbę interpretacji zmierzonej wytrzymałości plastycznej przy pomocy modelu Taylora. Zgodnie z tym modelem wydłużenie próbki jest generowane przez pięć systemów poślizgu działających w każdym ziarnie. Taylor uzyl zasady minimalnego ścinania, aby wybrać pięć aktywnych systemów poślizgu — spomiędzy 12 systemów pślizgu dla geometry RPC — w zależności od orientacji ziaren. Stosunek całkowitego ścinania w aktywnych systemach poślizgu do makroskopowego odkształcenia próbki nazywane jest współczynnikiem Taylora. Średni współczynnik Taylora powinien być proporcjonalny do zmierzonej wytrzymałości plastycznej przy niskim odkształceniu. Jednakowoż pierwsze obliczenia dały błędne, odchylne wartości.Możliwym wyjaśnieniem dla tej niezgodności mogłoby być mniej niż pięci aktywnych systemów poślizgu.
EN
The main feature of processing metals by Severe Plastic Deformation (SPD) is the achievement of an ultra fine or even nanometre sized grain structure. Among the common SPD methods, High Pressure Torsion (HPT) is suited best because of the high amount of hydrostatic pressure (HP), which also allows reaching of very high deformations. The intention of this work was to systematically investigate the effect of HPT deformation on the evolution of texture at different HPs. Such an effect may arise from the marked presence of edge dislocations affecting the slip geometry but at the same time being sensitive to the hydrostatic pressure. Ma gnesium has been chosen since only a few investigations of texture evolution in SPD metals are available for hexagonal lattice. As Mg based metals are quite soft, RT deformation by HPT is difficult. Thus, a special HPT tool has been designed which prevents from uncontrolled material flow and provides conditions of real hydrostatic pressure. Single- and polycrystalline samples of Mg and Cu have been deformed to shear strains y = 0.4...150 at HPs between I to 8 GPa. Crystallographic textures which developed during HPT of Mg single- and polycrystals, and Cu polycrystals are presented. Concomitantly the flow stress during HPT could be measured. The results are discussed in terms of their dependence on strain and hydrostatic pressure. Increasing the latter both the variations of textures and flow stress are shifted to lower shear strains. In HPT deformation of Mg there are also some indications for the occurrence of dynamic and/or static recrystallisation which does not come true for the case of Cu
PL
Główną zaletą odkształcania metali metodami ze zmienną drogą deformacji, tzw. SPD (ang. Severe Plastic Deformation) jest możliwogO osiogniecia struktury o bardzo malym rozmiarze ziarna, nawet rzędu nanometrów. Pomiędzy kilkoma metodami SPD, za najbardziej efektywną uważana jest metoda skręcania pod wysokim ciśnieniem hydrostatycznym — HPT (ang. High-Pressure Torsion), która pozwala na odkształcanie metalu do najwyższych możliwych obecnie wielkości. Celem niniejszej pracy jest zbadanie zmian struktury oraz tekstury krystalograficznej w mono i polikrystalicznym magnezie oraz polikrystalicznej miedzi odkształcanych metodą skręcania pod wysokim ciśnieniem hydrostatycznym (HPT) w temperaturze pokojowej, przy różnych wartościach ciśnienia hydrostatycznego zastosowanego podczas procesu odkształcenia. Wpływ zmiany ciśnienia odkształcania na teksturę spodziewany jest ze względu na obecność dyslokacji krawędziowych w dużej gęstości, które oddziaływują na geometrię poślizgu, będąc jednocześnie czułe na wielkość ciśnienia hydrostatycznego. Badania prowadzone byly na magnezie technicznej czysto gci, poniewai niewiele jest wynik6w tego typu do gwiadczen dla metali o strukturze heksagonalnej. Poniewai magnez jest rclatywnie miekkirn metalem, odksztalcanie go w temperaturze pokojowej do wysokich wartogci odksztalcenia rzeczywistego nie zawsze jest moZliwe w temperaturze pokojowej, specjalne narzedzie ograniczajqce niekontrolowany wyplyw materialu zostalo zaprojektowane oraz z powodzeniem zastosowane. Monokrysztaly Mg oraz polikrystaliczny Mg i Cu odksztalcono do wartogci odksztalcenia rzeczywistego od 0.4 do 150 przy zastosowaniu ci gnich hydrostatycznych o wielkogci od 1 do 8 GPa w temperaturze pokojowej. Opisano tekstury krystalograficzne, ktOre wyksztalcily sic w tak odksztalconych metalach oraz omOwiono ich zaleZno gci w funkcji zastosowanego ci gnienia oraz wielkogci nadanego odksztalcenia. Komponenty tekstury charakterystyczne dla odksztalcenia metodq HPT obserwowane sq wczegniej w funkcji odksztalcenia przy zastosowaniu wyZszego ci g nienia hydrostatycznego. W przypadku magnezu zaobserwowano wystcpowanie skladowych pochodzqcych od rekrystalizacji statycznej/dynamicznej, czego nie stwierdzono w przypadku miedzi.
3
Content available remote Texture evolution and microstructure of ECAP Cu determined by XRD and EBSD
EN
The equal channel angular pressing (ECAP) as a method of severe plastic deformation imposes high strains to the materials deformed. The consequence is the crystal fragmentation of the material leading to an ultrafine or even nanograined structure yielding various improved properties. Since ECAP can achieve extraordinarily high plastic strain of material, the evolution of crystallographic texture, misorientation distribution and crystal size are of high interest. These properties have been investigated for the example of room temperature deformation by ECAP under variation of pass number (up to 16) as well as route type (A, BC and C). Based on the orientation distribution function (ODF) in the Euler angles space, the development of texture and periodical changes of its main components has been analyzed. The evolution of misorientation of the deformed microstructure accompanied with its fragmentation was observed by electron back scatter diffraction (EBSD) in terms of changeable parameters of deformation. The obtained orientation maps also reflect the influence of the macroscopic shear conditions on the development of microstructure.
PL
Metoda silnej deformacji plastycznej ECAP (equal channel angular pressing) pozwala osiagnąć bardzo duże odkształcenie materiału. Konsekwencją zastosowania takiego sposobu odkształcenia jest fragmentacja krystalitów prowadząca do struktury ultradrobnoziarnistej lub nanokrystalicznej poprawiającej znacznie właściwosci mechaniczne materiału. Z uwagi na szczególnie silne odkształcenie plastyczne materiału, interesujący staje się rozwój tekstury krystalograficznej, rozkład wzajemnych dezorientacji krystalitów jak i ich rozmiar. Parametry te były badane na przykładzie próbek Cu odkształconych metodą ECAP w temperaturze pokojowej. Zastosowano różną liczbę przepustów (maksymalnie 16) według drogi A, BC i C. Na podstawie funkcji rozkładu orientacji (FRO) przeanalizowano rozwój tekstury i periodyczne zmiany jej głównych składowych. Zmiany w rozkładzie dezorientacji i mikrostrukturze towarzyszące fragmentacji krystalitów były obserwowane techniką EBSD w zależności od parametrów deformacji. Uzyskane mapy orientacji odzwierciedlają również wpływ makroskopowych warunków ścinania na mikrostrukture odkształcanej miedzi.
4
Content available remote Structure irregularities detected by X-ray diffraction effects
EN
Polycrystalline materials are solids which properties depend on such quantities as chemical and phase composition, crystallographic texture, residual stresses, grain size, etc. Applied technological processes lead usually to change the values of the parameters describing the quantities as well as modify the structure characteristics in macro- and micro-scale. In the result, both the global and local irregularities of material structure appear. When the irregularities become significant, numerous material properties reveal dierentials from point to point in a prepared constructing element. Spatial distribution of the irregularities can show a continuous character (gradient of the properties) or a non-continuous one, like in a layered structure. Moreover, the mentioned structure heterogeneity can be an intended effect like in a functionally graded materials or a quite non-favorable result of technological process (e.g. non controlled grain growth in the heat affected zone of welded elements). Among the most provocative challenge for the researchers are the structure inhomogeneities appeared under exploitation conditions (e.g. fatigue wear of the near-surface areas). In spite of the origin of the above structure irregularities, great research problem is recognizing its spatial distribution in the material. One of the most effective and non-destructive tool in this range is the X-ray diffraction technique assisted by appropriate experimental method and data processing procedures. The work presents the changes of the diffraction peak parameters of structure irregularities of a welded constructing element analyzed by the X-ray technique applied to investigation.
PL
Materiały polikrystaliczne są ciałami stałymi, których własności zależą od takich własności jak skład chemiczny i fazowy, tekstura krystalograficzna, naprężenia własne, rozmiar ziarna itp. Zastosowane procesy technologiczne prowadzą zwykle do zmiany wartości parametrów opisujących te własności, jak również modyfikują strukturę materiału w makro- i mikro-skali. W rezultacie w materiale pojawiają się globalne i lokalne niejednorodności. Kiedy nieregularności stają się znaczące, wiele cech materiału zmienia sie od punku do punktu w tak przygotowanym elemencie konstrukcyjnym. Przestrzenny rozkład tych niejednorodności może mieć charakter ciągły (gradient własności) lub nieciągły, jak w strukturze warstwowej. Co wiecej ta niejednorodność może być zamierzonym efektem, czego przykładem są funkcjonalne materiały gradientowe, lub niechcianym rezultatem technologicznego procesu (np. niekontrolowany wzrost ziaren w strefie wpływu ciepła w elementach spawanych). Wyzwaniem dla badaczy są niejednorodności powstałe w warunkach eksploatacyjnych (np. zmęczenie materiału w warstwach powierzchniowych). Niezależnie od pochodzenia tych nieregularności, problemem badawczym jest poznanie przestrzennego rozkładu tych efektów w materiale. Jedną z najbardziej efektywnych i nieniszczących metod jest dyfrakcja rentgenowska, przy wsparciu odpowiednich technik eksperymentalnych i przetwarzania uzyskanych danych. Przedstawiona praca poświęcona jest zmianom w parametrach pików dyfrakcyjnych uzyskanych przy użyciu dyfrakcji rentgenowskiej w konstrukcyjnym elemencie spawanym.
5
Content available remote Quantification of nanocrystallization by means of X-ray line profile analysis
EN
In crystalline materials the structural scale reaches submicron or even nanometer sizes when plastic deformation is sustained up to very high strains, low deformation temperatures and/or extended hydrostatic pressure. In order to find out the mechanisms of crystal fragmentation, X-ray Line Profile Analysis (XPA) can provide a number of important parameters which are not (or only scarcely) available by other methods such as TEM and residual electrical resistivity. These are the density, arrangement and type of dislocations, and the internal stresses which all can be determined even in case of very large strains and high contents of alloying atoms. Extending XPA to profiles at high order diffraction (Multi Reflection Profile Analysis, MXPA) it is possible to carefully separate strain broadening from size broadening. This is particularly important when the nanomaterials reveal grain sizes smaller than 100 nm, when the size broadening gets similarly high than strain broadening from plastic deformation. In dislocated metals, the dislocation contrast has to be taken into account for a correct evaluation of grain size which reduces to the coherently scattering domain size in case of nanocrystallization due to plastic deformation, namely SPD. When using highly intense Synchrotron radiation, a maximum in spatial and even time resolution is reached enabling in-situ measurements during deformation of the parameters quoted.
PL
W materiałach polikrystalicznych bardzo silnie odkształconych plastycznie przy niskich temperaturach i w warunkach ciśnienia hydrostatycznego, skala badań strukturalnych osiąga rozmiary sub- lub nanometryczne. Analiza profilu linii rentgenowskiej (XPA) może dostarczyć wielu ważnych informacji o mechanizmach fragmentacji kryształów, nieosiągalnych w ogóle (lub tylko w ograniczonym zakresie) innymi metodami, jak np. TEM czy elektryczna oporność własciwa. Nawet w przypadku bardzo dużych odkształceń i dużej zawartości dodatków stopowych, możliwe jest określenie gęstosci i typu dyslokacji sieciowych oraz naprężeń własnych. Rozszerzajac analizę XPA na odbicia dyfrakcyjne wyższych rzędów (Multi Reflection Profile Analysis, MXPA) możliwe jest rozdzielenie wpływu odkształcenia oraz rozdrobnienia ziarna na poszerzenie profilu. Jest to szczególnie ważne w przypadku nanomateriałów cechujących się rozmiarem ziaren mniejszym niż 100 nm, kiedy to wpływ rozdrobnienia ziarna na poszerzenie profilu staje się porównywalny z wpływem deformacji plastycznej. W materiałach o dużej gęstosci dyslokacji (np. po procesie SPD), poprawna ocena wielkości ziarna wymaga uwzglednienia kontrastu dyslokacyjnego, który redukuje ją do rozmiaru obszarów spójnego rozpraszania. Stosując intensywne promieniowanie synchrotronowe, można osiągnąć znaczną rozdzielczość przestrzenną oraz czasową, co pozwala na pomiary in-situ podczas dkształcenia, a tym samym umożliwia ocenę parametrów deformacji.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.