Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Temperature effects have a great influence on the mechanical behavior of cable-stayed bridges, especially for long-span bridges, which have significant time-varying and spatial effects. In this paper, the temperature characteristics of multi-tower cable-stayed bridge are obtained by data acquisition with wireless acquisition module. The test results show that: the daily temperature-time curves of atmospheric temperature and structural temperature are similar to sine waves with obvious peaks and troughs; structure temperature and atmospheric temperature have obvious hysteresis; longitudinal displacement, transverse displacement and vertical of mid-span beam are negatively correlated with atmospheric temperature; the temperature distribution of the cable tower is not uniform, and the maximum temperature difference of the section is 23.7°C considering 98% of the upper limit value; the longitudinal, transverse and vertical displacement of cable tower and the cable force is negatively correlated with atmospheric temperature, and the relationship between cable force and atmospheric temperature is a cubic function rather than linear function.
EN
Polyurethane (PU) is a polymer widely used in the biomedical field with excellent mechanical properties and good biocompatibility. However, it usually exhibits poor antibacterial properties for practical applications. Efforts are needed to improve the antibacterial activities of PU films for broader application prospect and added application values. In the present work, two PU films, TDI-P(E-co-T) and TDI-N-100-P(E-co-T), were prepared. Silver nanoparticles (AgNPs) were composited into the TDI-N-100-P(E-co-T) film for better mechanical properties and antibacterial activities, and resultant PU/AgNPs composite film was systematically characterized and studied. The as-prepared PU/AgNPs composite film exhibits much better antibacterial properties than the traditional PU membrane, exhibiting broader application prospect.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.