Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Erosion and sedimentation have a very big influence on flooding. Floods are strongly influenced by land use and population activities that change the river’s physical condition, including erosion and sedimentation. The river upstream was very steep, and the downstream was narrowing and meandering with high rainfall recorded. This study analyses erosion, sedimentation, and its handling using the eco-hydraulic base. The method involves input rainfall data, river hydraulics, land use, watershed area, and land cover. The analysis of hydrology, hydraulics, land use, flood discharge, and eco-hydraulic, inundation height, vegetation diameter, velocity reduced, and riverbank width measured in five bridges cross-sections along the river. The eco-hydraulic compares the width of existing riverbanks and design, high inundation, and the vegetation diameter to minimise flood discharge. Erosion in the right cliff is 22.73% and the left cliff is 37.04%, land erosion was 225.83 Mg∙ha-1∙year -1. The river’s bottom is formed by rocks of 0.18-1.30 mm. The plantation land used around the Lae Kombih River grows mainly an oil palm with a diameter of 0.5-0.7 m. The riverbank design on 100 m for vegetation diameter of 0.1-1.0 m can retain flood discharge for five years return period up to 72.3%, resulting in discharge of 112.04209.43 m3∙s-1. The largest erosion and sedimentation on the river border is Dusun Silak, so it is recommended to plant Vetiveria zizanioides, Ipomoea carnea and Bambusoideae. An inundation height of 0.9 m can be recommended to design an embankment to be used as flood mitigation.
EN
Previous researchers have been widely studied the equation for calculating the energy dissipation in USBR Type IV, applied in the stilling basin structure as an energy dissipator. However, inefficient energy dissipating basins are commonly found in the field due to the large discharge and high water head, potentially damaging the bottom of the energy dissipating basin and its downstream river. Therefore, an energy dissipator plan fulfilling the safe specifications for the flow behaviour that occurred is required. This study aimed to determine the variation of the energy dissipators and evaluate their effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was undertaken on the USBR Type IV spillway system. The novelty of this experiment showed that combination and modification dissipation features, such as floor elevation, end threshold and riprap lengthening, could effectively dissipate the impact of energy downstream. The final series exhibited a significantly higher Lj/y1 ratio, a favourable condition due to the compaction of the hydraulic jump. There was also a significant increase in the downstream tailwater depth (y2) during the jump formation. Therefore, the final series energy dissipator was better in the stilling basin design for hydraulic jump stability and compaction. The increase in energy dissipation for the final series type was the highest (98.4%) in Q2 and the lowest (84.8%) in Q10 compared to the original series. Therefore, this type can better reduce the cavitation risk damaging to the structure and downstream of the river.
3
EN
Energy dissipator functions to dissipate the river-flow energy to avoid longitudinal damage to the downstream river morphology. An optimal energy dissipator planning is essential to fulfilling safe specifications regarding flow behavior. This study aims to determine the variation of energy dissipators and evaluate its effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was carried out on the existing weir condition (two steps). It was also carried out on four stepped-weir variations, i.e., three-step, three-step with additional baffle blocks at the end sills, four-step, and six-step. Dimensional analysis was employed to correlate the different parameters that affect the studied phenomenon. The study shows a three-step jump shows a significantly higher Lj/y1 ratio, which is an advantage to hydraulic jumps’ compaction. The comparison of energy dissipation in all weir variations shows that the three-stepped weir has wasted more energy than other types. The energy dissipation increase of the three-step type is 20.41% higher than the existing type’s energy dissipation and much higher than other types. The dimensions of the energy dissipation basin are the ratio of the width and height of the stairs (l/h) of the three-step type (2.50). Therefore, this type is more optimal to reduce the cavitation risk, which damages the river structure and downstream area.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.