Purpose: The main aim of the research presented in the article was to identify and categorize the main production waste generated in the textile and clothing industry and their impact on the environment in the context of sustainable development, along with presenting recycling as a solution to the problem of production waste. Nowadays, through newly emerging EU directives, growing population, and consumer lifestyles, and, consequently, the huge amount of waste generated, the waste problem will increase, and it will be increasingly important to look for new solutions to this problem. Design/methodology/approach: The research presented in the article used an analysis of the literature on the textile industry and its impact on the environment, along with an analysis of the generated textile waste in the concept of sustainable development. Findings: Textile and clothing industry is an important factor influencing the sustainable development of the economy both in the world and in Poland. In the light of the newly established EU directives, this will be a very important issue in the future, which will require urgent attention to this topic and finding optimal solutions in the context of sustainable development or the circular economy. Based on the report results, there has already been a significant change in the behavior and ecological awareness of Poles over recent years. Research limitations/implication: Future research will continue material recovery during physical and chemical recycling. Practical implications: The article presents a review of research on the diversity of waste from the textile and clothing industry in Poland, which shows the importance and scale of the problem and allows for further research on the management of the generated waste. The author also collected data from a nationwide report on Polish people approach to clothing recycling, which she presented in the article, but they require a broader and more detailed analysis. Originality/value: Based on the analysis of available literature, the article shows the scale of the problem, which is an urgent problem and an important future issue thanks to the new EU directives on sustainable development and the circular economy. Additionally, data was collected regarding a report on Poles' approach to recycling, which highlights the consumer trend in environmental protection.
Purpose: The main aim of the research presented in this article was identification and categorization of the main production waste generated in the textile and clothing industry and their impact on the environment in the context of sustainable development, together with the presentation of several proposals for solutions to the problem of production waste. Nowadays, through the newly emerging EU directives, the increasing population and consumer lifestyle, thus the huge amounts of generated waste, the problem of waste coming from textile and clothing industry will increase and it will be more important to find new solutions to it. Design/methodology/approach: In the research presented in this article, an analysis of the literature on the processes of the textile and clothing industry was used; waste generation from these industries and their impact on the environment along with the concept of sustainable development. Findings: The management of waste from the textile and clothing industry is an important factor influencing the sustainable development of the economy, both in the world and in Poland. Under the newly created EU directives, it will be a very important issue in the future, which will require urgent addressing this topic and finding optimal solutions in the context of sustainable development or the circular economy. Research limitations/implications: In the future, research will be continued in the field of production waste management in the textile and clothing industry, their disposal or recycling. Practical implications: This article provides an overview of quantitative research and diversity of waste from the textile and clothing industry in Poland and in the world. This review shows the importance and scale of the problem and allows for further continuation of research to manage the generated waste. The author has also collected concepts for the further management of post-production waste, which she presented in the article, but they require a broader and more detailed analysis. Originality/value: Based on empirical research, the article shows the scale of the problem that, through the new EU directives on the circular economy and sustainable development, will be a forward-looking and important issue. Additionally, the article presents concepts for waste management from the industrial and consumer perspective.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper presents the application of potassium ferrate(VI) (K2FeO4) for the removal of selected pollutants from water and wastewater. The research results on the degradation of endocrine disrupting compounds (EDCs), decomposition of surfactants (SPCs), personal care products (PCPs), pharmaceuticals and their metabolites have been reviewed. Due to K2FeO4 strong oxidizing and coagulating properties, high stability, non-toxic by-products and non-selectivity it is sometimes called “environmentally friendly oxidant”. Due to this reasons K2FeO4 can be a multi-purpose water and wastewater treatment chemical and an alternative to advanced oxidation processes (AOPs).
The article compares the classic Fenton reagent (Fe2+/H2O2) with its modification with zero-valent iron (ZVI/ H2O2) to remove azo dye Acid Red 27 from aqueous solutions at a concentration of 100 mg/L. For both methods, the most favorable parameter values were determined at which visual discoloration of the solutions tested was obtained (for Fe2+/ H2O2:pH 3.5, H2O2=60 mg/L, Fe2+/ H2O2=0.3, t=15 min, and for ZVI/ H2O2pH = 3, H2O2=40 mg/L, ZVI=80 mg/L, t=15 min). Under these conditions, the COD value was reduced by 71.5% and 69.2% for the classic Fenton and its modification, respectively. A reduction in toxicity was also obtained for Vibrio fischeri bacteria to below 25% by using the Microtox test. ZVI digestion at acidic pH for 10 minutes allowed to shorten the reaction time by about four times - from 15 to 4 minutes. BET analysis showed that the specific surface area increases with the digestion time, which significantly accelerates the reaction. The visual discoloration of aqueous solutions was obtained, and the final COD values were very small, ranging from 49-53 mg O2/L. According to the Aliivibrio fischeri toxicity classification test for water samples, all solutions of dyes tested can be considered as non-toxic (toxicity value <25%). In the study presented, results of decreasing the COD value and concentration of the dye in the ZVI/ H2O2 method obtained are slightly worse compared to the Fe2+/ H2O2method. However, taking the decolorisation time as a criterion, a four times faster decolorisation time was obtained in the ZVI/ H2O2 method, compared to the Fe2+/ H2O2 method.
PL
W artykule porównano klasyczny odczynnik Fentona (Fe2+/H2O2) z jego modyfikacją żelazem o zerowej wartościowości (ZVI/ H2O2), w celu usunięcia barwnika azowego czerwień kwasowa 27 z wodnych roztworów, o stężeniu 100 mg/L. Dla obu metod wyznaczono najkorzystniejsze wartości parametrów, przy których uzyskano wizualne odbarwienie badanych roztworów (dla (Fe2+/H2O2): pH 3,5, H2O2=60 mg/L, Fe2+/ H2O2=0,3, t=15 min. i dla ZVI/H2O2: pH 3, H2O2=40 mg/L, ZVI=80 mg/L, t=15 min. W tych warunkach wartość ChZT spadła o 71,5% i 69,2% dla klasycznego Fentona i jego modyfikacji. Zmniejszenie toksyczności uzyskano również dla bakterii Aliivibrio fischeri (poniżej 25%) przy zastosowaniu testu Microtox. Trawienie ZVI w kwasowym pH przez 10 minut pozwoliło skrócić czas reakcji około cztery razy z 15 do 4 minut. Analiza BET wykazała, że powierzchnia właściwa wzrasta wraz z czasem trawienia, co znacznie przyspiesza reakcję. Uzyskano wizualne odbarwienie roztworów wodnych, a końcowe wartości ChZT były bardzo małe i mieściły się w zakresie 49-53 mg O2/L. Zgodnie z testem klasyfikacji toksyczności wobec Vibrio fischeri dla próbek wodnych, wszystkie testowane roztwory barwników można uznać za nietoksyczne (wartość toksyczności <25%).
The article presents the possibility of using potassium ferrate(VI) (K2FeO4) to remove dyes (Acid Red 27, Reactive Black 5, Acid Green 16) belonging to the single azo, double azo and triarylmethane classes from aqueous solutions with an initial concentration of 100 mg/l (Chemical Oxygen Demand (COD) values for AR27, RB5 and AG16 sulutions were 172, 156 and 198 mg O2/l, respectively). For the most favorable values of oxidation parameters of AR27 and RB5 (pH 7, K2FeO4 concentration, 180 and 240 mg/l, respectively, reaction time 10 min), visual discolouration of the aqueous solutions investigated and a decrease in COD values of 83.7% and 81.4%, respectively, were achieved. In the case of AG 16 dye, in the most favorable conditions of the oxidation process (pH 3, K2FeO4, concentration 300 mg/l, 15 min), visual discolouration and a decrease in the COD value of 83.8% were also obtained. The probable reasons for the higher resistance of AG16 to oxidation using K2FeO4 compared to AR27 and RB5 were also explained, based on the analysis of the structure and type of bonds present in the molecule AG 16.
PL
W artykule przedstawiono możliwość zastosowania żelazianu(VI) potasu (K2FeO4) do usuwania barwników (Acid Red 27, Reactive Black 5, Acid Green 16), należących do barwników azowych i triarylometanowych z roztworów wodnych o stężeniu początkowym 100 mg/dm3 (wartości ChZT(Cr) dla roztworów Acid Red 27, Reactive Black 5 i Acid Green 16 wynosiły odpowiednio 172, 156 i 198 mg O2/dm3). Dla najkorzystniejszych wartości parametrów procesu utleniania Acid Red 27, Reactive Black 5 (pH 7, stężenie K2FeO4 odpowiednio 180 i 240 mg/dm3, czas reakcji 10 min.), uzyskano wizualne odbarwienie badanych roztworów wodnych oraz zmniejszenie wartości ChZT(Cr), odpowiednio o 83,7% i 81,4%. W przypadku barwnika Acid Green 16, w najkorzystniejszych warunkach przebiegu procesu utleniania (pH 3, stężenie K2FeO4 300 mg/dm3, czas reakcji 15 min.), uzyskano także wizualne odbarwienie oraz zmniejszenie wartości ChZT(Cr) o 83,8%. Wyjaśniono też prawdopodobne przyczyny większej odporności Acid Green 16 w stosunku do Acid Red 27 i Reactive Black 5 na utlenianie z zastosowaniem K2FeO4, na podstawie analizy budowy i rodzaju wiązań obecnych w cząsteczce barwnika Acid Green 16.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper provides comprehensive information on the recent progress of the use of potassium ferrate(VI) (K2FeO4) for the removal of selected pollutants from water and wastewater. K2FeO4 provides great potential for diverse environmental applications without harm to the natural environment. Therefore K2FeO4 was used in removal of cyanides from gold ore purification processes, degradation of dyes and organic compounds in wastewater and algae removal in the water treatment process. The quoted research results indicate that K2FeO4 due to its strong oxidizing and coagulating properties, could be an alternative to the use of Advanced Oxidation Processes (AOPs) or be an additional option to conventional methods of water and wastewater treatment. As a result of using K2FeO4, the emerge intermediates of the impurities decomposition are nontoxic or show less toxicity than the initial substrates. The use of K2FeO4 is also associated with certain limitations of technical and technological nature, which requires further research in order to use its high efficiency in the degradation of various types of contamination on a technical scale.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.