Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper contains the results of radionuclides transportation modeling under National Radioactive Waste Disposal (NRWD) grounds in Różan (northeast Poland). The disposal is of the low- and intermediate-level waste (LILW) type. We simulated the radionuclides transportation process through sandy soils. The simulation was performed in a self-written simulator in Scilab using the finite difference method. The model included diffusion, advection and radioactive decay. The model was tested according to convergence and stability. Assuming the hydrological gradient being 0.008, the contamination transportation time was 30–46 years depending on the modeled problem. The modeled distance of 600 m was from underneath the disposal to the exudation in the Narew ravine. Radioactive decay for both cesium (Cs 137) and strontium (Sr 90) had a significant impact on the results. The model proved to be a useful tool for performing simple scientific simulations. This survey was part of a PhD thesis.
PL
Artykuł zawiera wyniki modelowania transportu potencjalnego skażenia Cs 137 i Sr 90, przeprowadzonego dla wód podziemnych pod Krajowym Składowiskiem Odpadów Promieniotwórczych w Różanie (północno-wschodnia Polska). KSOP jest składowiskiem odpadów nisko- i średnioaktywnych. Modelowanie zostało przeprowadzone w samodzielnie napisanym symulatorze, w programie SciLab, z wykorzystaniem metody różnic skończonych. Symulowano proces transportu radionuklidów przez piaszczyste gleby. Model zawierał dyfuzję, adwekcję i rozpad promieniotwórczy. Model został przetestowany pod względem zbieżności i stabilności. Modelowany czas transportu skażeń spod dna składowiska do koryta rzeki Narew, przy założeniu gradientu hydrologicznego 0.008, wynosił od 30 do 46 lat w zależności od przyjętego scenariusza. Modelowany dystans wynosił 600 m. Rozpad promieniotwórczy miał znaczący wpływ na uzyskane rezultaty. Modelowanie potwierdziło, że symulator jest użytecznym narzędziem do przeprowadzania prostych, naukowych symulacji. Przeprowadzone badania były częścią pracy doktorskiej.
PL
W artykule przedstawiono informacje geologiczne i hydrogeologiczne o płytkich poziomach wodonośnych w zachodniej części województwa mazowieckiego, w obrębie miasta i gminy Sochaczew, w aspekcie lokalizacji projektowanego otworu geotermalnego Sochaczew IG-1 oraz (wstępnie) o ich potencjalnej przydatności dla magazynowania energii cieplnej, tj. w jednym z przyszłych wariantów systemu ATES. Analizowane informacje pochodziły z bazy danych o obiektach, które zgromadziła Państwowa Służba Hydrogeologiczna (PSH). Uwzględniając dane PSH, zależnie od parametrów pracy projektowanego otworu geotermalnego oraz od charakterystyki przyszłych odbiorców energii z systemu ATES, a także w nawiązaniu do doświadczeń europejskich, stwierdzono możliwość budowy któregoś z wariantów systemu ATES (np. wykorzystującego do magazynowania energii jedną lub dwie warstwy wodonośne). Wstępnie wskazano rejon, w którym można by skorzystać z takich dwóch warstw po przeprowadzeniu dokładniejszych badań, np. geofizycznych oraz po testach i obserwacjach w przynajmniej jednej badawczej studni sondażowej.
EN
The article presents geological and hydrogeological data about shallow aquifers in the western part of the Mazovian province within the town and commune of Sochaczew, in terms of the location of the planned Sochaczew IG-1 geothermal borehole and in terms of its potential for aquifer thermal energy storage (ATES). The analyzed data was from the drilled wells database of the Polish Hydrogeological Survey (PSH). Taking the PSH data into account, parameters of the planned geothermal boreholes, the characteristics of future energy consumers of the ATES as well as to European experiences, it has been found that it is possible to apply one of the variants of the ATES system (e.g. using one or two aquifers for storage). Initially the area was selected where two aquifers could be applied for the ATES system after detailed geophysical studies, tests and observations in at least one exploratory well.
PL
Otwory Skierniewice GT-1 (gł. 3001 m) i Skierniewice GT-2 (gł. 2900 m) zlokalizowane są w południowo-zachodniej części niecki warszawskiej, stanowiącej środkowy fragment niecki brzeżnej. otworami udokumentowane zostały zasoby wód termalnych w utworach jury dolnej, cechujące się wysoką mineralizacją, powyżej 120 g/dm3 . Tak wysokie zasolenie wód implikuje trudności z ich wtłaczaniem z powrotem do górotworu. w niniejszej pracy przedstawiono wyniki modelowań numerycznych związanych z koncepcją poprawy warunków zatłaczania wód do górotworu poprzez wtłaczanie ich w postaci wód rozcieńczonych wodami odsolonymi w procesach membranowych. wyniki testu związanego z zatłaczaniem rozcieńczonych wód do górotworu posłużyły do zbudowania modelu koncepcyjnego i numerycznego celem określenia długoterminowych skutków tego procesu. w efekcie możliwe było określenie efektów złożowych wynikających z pracy systemu w dwóch niezależnych układach: 1) przy zatłaczaniu wody o niezmodyfikowanym składzie chemicznym i 2) przy zatłaczaniu wód rozcieńczonych.
XX
Skierniewice GT-1 (3001 m deep) and Skierniewice GT-2 (2900 m deep) are located in the South-western part of the Warsaw Trough, which is the central portion of the Marginal Synclinorium. Thermal water resources in Lower Jurassic formation have been documented in both wells, with a mineralization above 120 g/dm3 . Such a high salinity implies difficulties with their injection back into the reservoir. This paper presents the results of numerical modeling related to the concept of improving the conditions for injecting water into the formation by injecting them in the form of diluted waters through their desalination in membrane processes. The test results of dilute waters injection into the formation were used to build a conceptual and numerical model in order to determine the long-term effects of this process. As a result, it was possible to determine the effects of the system operation in two independent arrangements: 1) the injection of waters with unmodified chemical composition and 2) the injection of diluted waters.
EN
Underground Thermal Energy Storage (UTES) is a powerful set of solutions that allows efficient management of thermal energy sources, both heat and cold, the demand of which is subjected to seasonal variations. Underground can store available in excess heat or cold for periods of up to several months and use whenever needed, especially in the opposing season. Sources of thermal energy that can be stored underground are, among others: solar thermal energy, cold winter air, waste heat from ventilation and waste heat from industrial processes. Two primary methods of under ground energy storage are Aquifer Thermal Energy Storage (ATES) where water reservoir is a thermal energy accumulator and Borehole Thermal Energy Storage (BTES) where rock formation acts as a heat/cold store. UTES allows to minimizing consumption of fossil fuels and therefore reduce costs of energy purchase, limiting the amount of greenhouse gases emission into atmosphere, and increasing energy security.
EN
The main objective of this study was to develop a spatial temperature distribution of the Karkonosze Pluton to indicate optimum locations for HDR systems at drillable depth. HDR geothermal technology makes it possible to extract heat from the Earth in areas where no hydro-geothermal resources are present. To produce electricity in a binary cycle, system temperatures of > 100°C are usually required. In this paper, the authors have analysed the potential opportunities for applying HDR technology in the area of the Karkonosze Pluton, which is regarded as an optimum location for the application of the HDR concept (due to the potential for stimulation offered by the mechanical properties of the granites, radiogenic heat production, modern tectonic activity, and the thickness of the pluton). The model used in the analysis, which takes into account a hypothetical assessment of the manner and paths of fluid migration within the pluton, provides an insight into the spatial distribution of subsurface temperatures. It thus allows the location of relatively shallow high-temperature zones, which are optimal for the efficient application of HDR technology, to be identified. With respect to this technology, the Szklarska Poręba area and the NE part of the pluton seem to be better targets than the Cieplice central area, where the model indicated much lower temperatures (e.g. at a depth of 5,000 m, estimated temperatures in the vicinity of Szklarska Poręba were about 185°C and in the vicinity of Cieplice they were about 140°C).
PL
Celem badań było opracowanie przestrzennego rozkładu temperatur plutonu Karkonoszy dla wskazania optymalnej lokalizacji dla systemu HDR na głębokościach osiągalnych wierceniami. Geotermalna technologia HDR umożliwia wykorzystanie ciepła wnętrza Ziemi na obszarach pozbawionych płynów termalnych głównie a aspekcie produkcji energii elektrycznej w systemach binarnych. Dla efektywnej pracy takich systemów wymagana jest temperatura górotworu powyżej 100°C. W artykule autorzy analizowali potencjalną możliwość zastosowania technologii HDR na obszarze plutonu Karkonoszy, który potraktowano jako optymalny dla zastosowania systemu HDR – głównie wskutek mechanicznej podatności granitów na procesy sztucznego szczelinowania, wysoką produkcję ciepła radiogenicznego, współczesną aktywność tektoniczną oraz znaczną miąższość plutonu. Prezentowany, hipotetyczny model strukturalno-termiczny uwzględniający sposób i drogi migrujących płynów pokazuje przestrzenny rozkład wgłębnych temperatur w obrębie plutonu. Umożliwia to lokalizację stref wysokich temperatur położonych względnie płytko, a zatem optymalnych dla efektywnego zastosowania technologii HDR. W tym kontekście, strefa plutonu w rejonie Szklarskiej Poręby oraz jego część NE przedstawiają się korzystniej niż strefa centralna w rejonie Cieplic, gdzie przeprowadzone modelowanie wskazuje temperatury znacznie niższe (np. w strefie Szklarskiej Poręby na głębokości 5000 m temperatury około 185°C natomiast w strefie Cieplic około 140°C).
EN
Determination of alternative water management in actively exploited geothermal system, which constitutes a significant source of renewable energy requires recognition and determination of reservoir and hydrogeothermal conditions for long-term, safe exploitation of geothermal energy. This paper provides assumptions for the conceptual model, the necessary step to execute numerical modeling of the Podhale geothermal reservoir. For the analyzed area geological conditions were determined, yielding 19 geological structures diverse in terms of thermal parameters, permeability, porosity and rock density. Main trends of tectonic dislocation and groundwater flow directions were indicated along with and characterization of thermal conditions. Exploitation conditions of geothermal boreholes are briefly discussed. Conceptual model for the Podhale geothermal system will subsequently allow for realization of the numerical models and determination of the maximum flow rate of thermal water, which under analyzed reservoir conditions will not disturb performance of the geothermal system, and in particular will not deplete energy resources.
EN
The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin- Gorzów Synclinorium . Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground . This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years’ time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.
PL
W artykule zaprezentowano metodykę szacowania potencjału geotermalnego do wytwarzania energii elektrycznej w siłowniach binarnych z wykorzystaniem obiegu organicznego Rankine’a (ang. ORC – Organic Rankine Cycle). Proponowana metodyka zaleca prowadzenie obliczeń z wykorzystaniem zależności gęstości oraz ciepła właściwego wody od temperatury i mineralizacji. W szacowaniu potencjału uwzględniono także relację pomiędzy sprawnością konwersji energii cieplnej w elektryczną, a temperaturą źródła ciepła. Wykonano obliczenia prowadzące do wyznaczenia błędu oszacowania potencjału poprzez przyjęcie stałych wartości parametrów eksploatowanej cieczy oraz sprawności konwersji energii, które w rzeczywistości są silnie zależne od temperatury i mineralizacji. W zakresie temperatur od 100 do 180°C oraz mineralizacji od 0 do 160 g/kg ewentualny błąd względny szacowania potencjału do wytwarzania energii elektrycznej w instalacjach ORC może w skrajnych przypadkach przekroczyć 50%.
EN
The article presents methodology to estimate the geothermal potential for electricity generation in binary power systems using organic Rankine cycle (ORC). The proposed methodology recommend to carry out the calculations using density and specific heat dependence on temperature and mineralization. The potential estimate takes also into account the relationship between the efficiency of heat into electricity conversion and the temperature of the heat source. Calculations were performed to determine the resulting error in estimation of the potential due to assumption of constant values of brine parameters and power conversion efficiency, which in reality are significantly dependent on the temperature and mineralization. In the temperature range from 100 to 180°C and mineralization from 0 to 160 g/kg relative error in the estimation of the potential to generate electricity in ORC installations in extreme cases may exceed 50%.
PL
Migracja pierwiastków promieniotwórczych z warstw powierzchniowych gleby poprzez kolejne warstwy osadów geologicznych ma ogromne znaczenie ze względu na przedostawanie się potencjalnego zagrożenia radiologicznego do warstw wodonośnych, a przez to do ujęć wody pitnej i użytkowej. Obecność antropogenicznych radionuklidów w środowisku jest związana zarówno z występującymi w przeszłości awariami obiektów jądrowych, takich jak katastrofa w Czarnobylu, próbnych testów jądrowych jak i coraz częstszego wykorzystywania tych pierwiastków w przemyśle i medycynie nuklearnej. Poniższa praca ma na celu nakreślenie poprzez studium literaturowe własciwości fizykochemicznych pierwiastków strontu i technetu, w celu określenia ich potencjału sorpcyjnego do osadów geologicznych z okolic Krajowego Składowiska Odpadów Promieniotwórczych w Różanie (ok. 90 km na NE od Warszawy). Omówione zostały tutaj czynniki zewnętrzne mające wpływ na sorpcyjność danego pierwiastka, takie jak pH, rodzaj osadu geologicznego, obecność mikroflory bakteryjnej jak i innych pierwiastków w warstwie wodonośnej. Sam mechanizm sorpcji także może być różny dla różnych pierwiastków. Wyniki tej analizy posłużą w przyszłości do przygotowania eksperymentu polegającego na doświadczalnej ocenie potencjału sorpcyjnego osadów geologicznych pobranych w rejonie KSOP w Różanie, jak i czułość strontu i technetu pod względem sorpcyjności na pozostałe czynniki mogące wystąpić w badanym środowisku.
EN
Migration of radionuclides from the surface through the underground geological layers has a great meaning because of their radiological hazard during a contact with underground water and possible infiltration into useable and drinking water. Anthropogenic radionuclides presence in the environment is the effect of both past breakdowns of nuclear objects like the Czarnobyl reactor damage, nuclear weapon tests and more common usage of radionuclides in the industry and nuclear medicine. The goal of this paper is to highlight physicochemical characteristic of strontium and technetium based on the literature study to find out their sorption potential to the geological sediments present in National RadioactiveWaste Repository area at Różan (about 90 km to the NE from Warsaw). This paper discusses different parameters having influence on the strontium or technetium sorption potential like pH, type of geological sediment, bacterium occurrence or other elements presence in the groundwater. The sorption mechanism may also differ among different elements. Conclusions from this analysis will be the base to the planning of experiment which assumes the measurement of the discussed sorption potential of geological sediments sampled in the National Radioactive Waste Repository area at Różan for strontium and technetium.
PL
Jednym z podstawowych celów testów hydrodynamicznych jest określenie parametrów filtracyjnych warstwy wodonośnej. Wyniki testów są jednak najczęściej obarczone błędem polegającym na nieuwzględnieniu efektu termicznego wygrzewania się otworu geotermalnego podczas pompowania, co prowadzi do zaburzonych odczytów poziomu zwierciadła wody lub ciśnienia głowicowego. Efektem tego jest wyznaczenie wyższego współczynnika filtracji niż jest w rzeczywistości, co może prowadzić do niewłaściwego oszacowania wielkości zasobów eksploatacyjnych otworu. Efekt termicznego wygrzewania otworu, zwany również efektem termodźwigu (ang. thermal lift) jest tym bardziej istotny im większa jest głębokość otworu oraz większa różnica temperatur w jego profilu. W artykule przedstawiono równania pozwalające obliczyć powyższy efekt wraz z zastosowaniem w analizie danych z testu hydrodynamicznego dla otworu geotermalnego o głębokości 2000 m. W powyższym przypadku, maksymalna różnica pomiędzy zaobserwowanym ciśnieniem głowicowym a ciśnieniem głowicowym zredukowanym, obliczonym z uwzględnieniem opisywanego efektu wynosi 0,172 MPa, co odpowiada około 17,3 m wysokości słupa wody. Różnica obliczonego w obu przypadkach wartości współczynnika filtracji wynosi od 216,7% (II i III stopień pompowania) do 319,4% (I stopień pompowania).
XX
One of the primary purposes of hydrodynamic tests is to determine the hydraulic parameters of the aquifer. The results of the tests are often flawed as a consequence of rejection of thermal heating of a well during pumping which leads to aberrant readings of water level or wellhead pressure. A product of this is higher hydraulic conductivity coefficient than is in fact, which may lead to incorrect assessment of admissible volume of extracted groundwater. Effect of thermal heating of a well, also called thermal lift effect is the more important the greater depth of the well is and the bigger temperature difference is in the well’s profile. This paper presents equations that allows to calculate above affect including the sample analysis of the data from hydrodynamic test carried in 2000 m deep geothermal well. In this case, the maximum difference between the observed and reduced wellhead pressure is 0,172 MPa, which is approximately 17,3 m of water column. The difference of hydraulic conductivity coefficient calculated for both cases is from 216,7% (II and III step of pumping) to 319,4% (I step of pumping).
PL
W artykule omówiono ideę wykorzystania systemów gorących suchych skał (HDR) do pozyskania energii cieplnej oraz produkcji energii elektrycznej. Zasygnalizowano wpływ warunków ich pracy na osiągane efekty w kontekście ich modelowania numerycznego. Większą uwagę poświęcono kryteriom oceny jakości pracy systemu HDR oraz zagadnieniu modelowania procesów szczelinowania i eksploatacji systemów HDR. Opisano wymagania, jakie według doświadczeń opisanych w literaturze są stawiane na etapie modelowania numerycznego.
EN
The article discusses the idea of using hot dry rock systems (HDR) for the purpose of heat delivery and electricity production. Working conditions of such systems and their influence on system performance are mentioned. More attention is paid to criteria that describe the working performance of HDR. Fracturing and exploitation processes are also described. According to the experiences described in the cited literature, requirements that are placed for numerical simulators are also presented.
PL
Artykuł przedstawia zagadnienie modelowania numerycznego wpływu ciepła radiogenicznego na temperaturę eksploatowanej wody produkowanej w ujęciu dubletu oraz stabilizację termiczną ośrodka skalnego po zaprzestaniu eksploatacji. W tym celu przeprowadzono modelowanie hipotetycznego złoża gorących suchych skał (HDR), gdzie otwór produkcyjny znajduje się w odległości 775 m od otworu chłonnego, ujmując strefę o temperaturze 110°C. Okres eksploatacji wynosi 30 lat, natomiast okres stabilizacji termicznej złoża wynosi 100 lat. Wykonano symulacje dla zróżnicowanych wartości ciepła radiogenicznego, w zakresie od 1 do 5žW/m3, przy przepływach 30 raz 60 kg/s (ok. 110 i 220 m3/h). Dla każdego ze scenariuszy analizowano wpływ zastosowania różnych warunków brzegowych. Wyniki modelowania wskazują, że ciepło radiogeniczne obecne w skałach ma zbyt niską moc, aby w zauważalnym stopniu podgrzać wodę zatłaczaną otworem chłonnym, jak również nie przyczynia się do szybszego powrotu złoża do równowagi termicznej, biorąc pod uwagę wspomnianą skalę czasu.
EN
The article presents the numerical modeling of the impact of radiogenic heat affecting the temperature of the thermal water produced in doublet configuration and thermal recovery of the reservoir after the cessation of operation. For this purpose, a hypothetical model of hot dry rock (HDR) reservoir was created, where the production and injection well are 775 m apart, penetrating a zone with a temperature of 110oC. Production timespan is 30 years, while the simulated period for thermal recovery of reservoir is 100 years. Simulations are performed for different values ?? of radiogenic heat, ranging from 1 to 5 [mi] W/m3, with flowrates of 30 and 60 kg/s (about 110 and 220 m3/h). For each scenario, the influence of using different boundary conditions was evaluated. The modeling results indicate that radiogenic heat available in rocks has too low power to a noticeable degree warm up waters injected to injection well, and does not contribute to a more rapid return of the reservoir to the thermal balance, taking into account the time scale of several to hundreds years.
13
Content available remote Problematyka modelowania numerycznego 3D złóż geotermalnych
PL
Artykuł przedstawia zagadnienia związane z wykonywaniem szczegółowych modeli numerycznych 3D stosowanych w ocenie zasobów złóż geotermalnych. Przedstawione są wymagania odnośnie danych wsadowych oraz opisane kolejne kroki w procesie tworzenia modelu. Artykuł zawiera skrócony opis kodu TOUGH2, jednego z najpopularniejszych symulatorów numerycznych stosowanych w geotermalnej inżynierii złożowej oraz podejmuje w szerszym zakresie problematykę ustalania warunków brzegowych oraz kalibrację modelu.
EN
The article presents issues related to creating 3D numerical models used in the evaluation of geothermal resources. Included are requirements for data input and described are steps in the process of model creation. The article contains a summary description of TOUGH2 code - one of the most popular simulators used in geothermal reservoir engineering and undertake in a broader view problems of determining boundary conditions and model calibration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.