Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Plant balls from a Pomeranian lake, their invertebrate and microplastic components
EN
Two balls with similar diameters (approximately 11–12 cm) were found on the bottom of Lake Białe (Kashubian Lake District) at depths of 4 m and 7 m. The structures were made of tightly-packed plant remains represented mainly by decaying leaves of Larix sp. The balls were colonised by invertebrates (Tubificinae, Hirudinea, Isopoda, and insect larvae). They also contained pollutants, namely microplasticsin blue, white, red, and black colours with a length from 500 to 1000 μm. Four other balls had been earlier reported byan other diver in the same lake. According to a report of the local press, similar balls have also been found in Lake Bobęcińskie (Bytowskie Lake District). This article aims to record the first appearance of larch balls in this area.
EN
The contrast in habitat complexity between emergent (EMV) and submerged vegetation (SUV) zones in aquatic ecosystems results from the differences in the structure of plant above- and belowground parts, subject to seasonal changes. Comparative studies on the influence of habitat complexity created by vegetation on benthic macroinvertebrates in coastal areas are scarce. In order to fill this knowledge gap, we performed a study on a seasonal basis in the brackish Vistula Lagoon (southern Baltic Sea) in two zones: EMV, dominated by a dense belt of Phragmites australis (Cav.) Trin. ex Steud, and SUV, with scattered stands of Potamogeton perfoliatus L. We assumed the following: i. Species richness, diversity, and density of invertebrates are higher in the EMV zone due to greater and less seasonally variable structural complexity than in the SUV zone, ii. High belowground complexity in the EMV zone due to the presence of the rhizome/root matrix, much more robust and denser than in the SUV zone limits the vertical distribution of macroinvertebrates. Both hypotheses were supported. Overall, our results pointing to higher animal diversity and density in more complex aquatic habitats are consistent with other studies, inferred mostly from comparative surveys of bare bottom and that covered with submerged vegetation. The results of this study highlight potentially far-reaching implications for benthic invertebrate fauna and their role in the aquatic ecosystem in the context of increasingly rapid loss of aquatic vegetation due to multiple anthropogenic stressors.
EN
The role of reeds in the functioning of ecosystems and their significance for zoobenthos in the coastal lagoons is poorly understood. We hypothesise that next to the spatial zonal differentiation of abiotic factors in the apparently homogeneous habitat of reeds, benthic macroinvertebrate fauna is also unevenly distributed, and differs in taxonomic and functional diversity, as well as density and biomass across the reed stand. The research was carried out in the Vistula Lagoon (southern Baltic) along three designated sectors arranged parallel to the shoreline and differing in distance from the shore and depth. Mean density of reed stems in the analysed stand was within the range of values reported from different American and European wetlands. Regardless of the location within the reeds and the season, the fauna was dominated by detritivorous Tubificinae and larvae of Chironomidae. The highest diversity, density, and biomass of fauna were found in the middle littoral zone, and the lowest in the outer zone adjacent to the open water. The presented data support our hypothesis predicting the existence of a spatial variation pattern in the composition and distribution of macroinvertebrates in response to the changing zonal habitat conditions within the reed stand.
EN
Most knowledge on the feeding ecology of fish has been based on the analyses of food remains from the alimentary tracks. This traditional method, however, only provides information about recently consumed food, and is burdened with a risk of incorrect assessment of the role of individual diet components due to the different rates of digestion. A method free from such limitations is the analysis of fatty acids. The objective of our study was to recognise the potential of fatty acid signatures in providing information on the diet and feeding habits of six fish species from the shallow brackish Vistula Lagoon, southern Baltic Sea (Anguilla anguilla, Abramis brama, Rutilus rutilus, Pelecus cultratus, Perca fluviatilis, Sander lucioperca). Multivariate statistical analyses of fatty acid signatures permitted relevant grouping of the fish according to species and their diet, as well as evidenced substantial ontogenetic changes in perch, roach, and bream. They might be caused by dietary changes but can also result from internal regulatory processes. The obtained results confirmed that fatty acids provide useful, time-integrated dietary information, contributing to expanding knowledge regarding the feeding ecology of fish in shallow coastal water ecosystems. They also pointed to the necessity of assessment of the invertebrates and fish's ability to perform endogenous synthesis of polyunsaturated fatty acids, particularly in research on benthic communities. To our best knowledge, this is the first attempt to investigate the feeding habits of fish and food-web relationships in the coastal waters of the Baltic Sea using fatty acids.
EN
The aim of the study was to assess the suitability of a plankton net (diameter of 60 cm, mesh size of 500 µm) and a column sampler (length of 200 cm, diameter of 5 cm) for estimating the density of zooplankton predatory species (Neomysis integer, Leptodora kindtii, Cercopagis pengoi). Nocturnal sampling was performed once a month (May-November 2018) in the Vistula Lagoon (southern Baltic) in the range depth of 1.3-3.6 m. Statistical analysis indicated no significant differences between the N. integer and C. pengoi density estimated by the two sampling gears. In the case of L. kindtii, the mean density obtained by the column sampler was higher when analyzing all samples together and/or deep-water samples only (p < 0.02). However, no such differences were found at shallow stations i.e. up to ca. 2 m in depth. It was assumed that the more suitable sampling equipment for estimating zooplankton abundance in a shallow, well-mixed transitional (brackish) basin is the column sampler. This type of gear, so far used mainly for sampling of micro and mesozooplankton, allows the simultaneous nocturnal collection of the entire zooplankton size spectrum, including representatives of large predatory species. The suitability of light traps for qualitative studies of zooplankton species responding positively to light under the high turbidity of the Vistula Lagoon was also investigated. The traps proved to be most useful for N. integer (100% frequency), and much less for L. kindtii (46.2%) and C. pengoi (27.3%).
EN
Phytoplankton community structure was studied from 2002 to 2016 in the Vistula Lagoon (southern Baltic Sea) in the context of the 2010 shift in its population, as well as the reason for this shift and its environmental impact. This evident shift was indicated by Multidimensional Scaling at the Bray Curtis similarity level of 31%. Before 2010, the primary components of phytoplankton were Cyanobacteria (up to 98% of the biomass, October 2007) and Chlorophyta (40%, July 2002). After 2010, the contribution of Cyanobacteria considerably decreased, and the proportions of other phyla increased. The total phytoplankton biomass positively correlated with phosphorus, and Cyanobacteria biomass with silica. Evident changes were also observed in the seasonal dynamics of phytoplankton. Before 2010, the highest values of biomass occurred in autumn, and were related to high biomass of Cyanobacteria. Higher biomass has been recently reached in spring, during the dominance of Ochrophyta associated with Chlorophyta, Charophyta, and Cryptophyta. Generalised additive models showed a significant decreasing trend of the total phytoplankton biomass, Cyanobacteria, Chlorophyta, and flagellates, suggesting a decrease in eutrophication. This trend is concurrent with a considerable increase in the ratio of zooplankton to phytoplankton biomass since 2010. The increased ratio, however, did not result from elevated zooplankton biomass, but from the drop in phytoplankton biomass. Therefore, the most probable reason for the decrease in phytoplankton biomass was the simultaneous decrease in the concentration of all nutrients. The potential additional impact of filtration by a new alien bivalve Rangia cuneata G. B. Sowerby I, 1832 is also discussed.
EN
The objective of the research conducted in the years 2011-2014 in the near-shore zone of the Vistula Lagoon was the verification of the hypothesis that in the coastal lagoon, similarly as in inland waters, habitat conditions can be substantially modified by macrophytic vegetation, depending on the represented life form and its abundance. The research was conducted in the zone of emergent plants (reed rush composed of Phragmites australis) and in the zone of submerged plants occurring as scattered patches of Potamogeton perfoliatus and Stuckenia pectinata. The hypothesis was supported only in the case of the reed rush chich substantially modified water insolation, temperature, and oxygenation, as well as the grain size composition of sediments, and concentration of organic matter contained in the sediments. Patches of submerged vegetation had insufficient surface area and were too scarcely overgrown by plants to considerably affect the habitat conditions and weaken the strong mechanical effect of waves and rate of water exchange between the littoral and open water zone.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.