Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present era, the renewable sources of energy, e.g., piezoelectric materials are in great demand. They play a vital role in the field of micro-electromechanical systems, e.g., sensors and actuators. The cantilever-based piezoelectric energy harvesters are very popular because of their high performance and utilization. In this research-work, an energy harvester model based on a cantilever beam with bimorph PZT-5A, having a substrate layer of structural steel, was presented. The proposed energy scavenging system, designed in COMSOL Multiphysics, was applied to analyze the electrical output as a function of excitation frequencies, load resistances and accelerations. Analytical modeling was employed to measure the output voltage and power under pre-defined conditions of acceleration and load resistance. Experimentation was also performed to determine the relationship between independent and output parameters. Energy harvester is capable of producing the maximum power of 1.16 mW at a resonant frequency of 71 Hz under 1g acceleration, having load resistance of 12 kΩ. It was observed that acceleration and output power are directly proportional to each other. Moreover, the investigation conveys that the experimental results are in good agreement with the numerical results. The maximum error obtained between the experimental and numerical investigation was found to equal 4.3%.
EN
A series of Mn-doped CeO2-CuO catalyst (CeO2-MnOx-CuO) (Ce/Mn molar ratio of 0.5, 1.0 2.0 and 3.0) were prepared using co-precipitation method for the selective oxidation of CO in automobile engine exhaust. The content of copper was 5.0 wt. % in each sample. Catalysts were installed on the automobile engine exhaust and CO amount was recorded with help of CO sensor, with and without the catalyst. The catalytic converter efficiency was estimated for each catalyst through efficiency formula. It was observed that Ce/Mn catalyst with a molar ratio of 2.0 shows the maximum efficiency (88.35%). Stability of conversion process was analyzed by plotting the CO amount with respect to time. The catalyst with Ce/Mn molar ratio of 2.0 performed the most streamline conversion process with least deviations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.