Sensitivity analysis measures how changes in system inputs affect outputs. Previously, a large amount of sensitivity analysis research was relevant to the precise probability that is regarded as an ideal condition of engineering. Due to insufficient test samples and the low accuracy of test data, system reliability with hybrid uncertainty is difficult to be described as a precise value. As a profusion of highly integrated electromechanical equipment is applied in modern life, it is impossible to apply sufficient resources to eliminate the stochastic property of every component, which necessitates the identification of highly sensitive components to efficiently reduce imprecision. Hence, based on the theory of imprecise probability, imprecise sensitivity analysis has become a popular research topic in the last decade. In this paper, a method for uncertain system reliability and imprecise sensitivity analysis is proposed based on a Bayesian network, a probability box and the pinching method. The feasibility and accuracy of the combined method are fully verified through the evaluation and analysis of a numerical example and a case study of an electromechanical system, and the highly sensitive components that heavily influence the imprecision of system outputs are accurately identified.
PL
Celem analizy czułościowej jest badanie w jakim stopniu zmiany danych wejściowych systemu wpływają na dane wyjściowe. Dotychczasowe badania z wykorzystaniem analizy czułościowej były związane z dokładnym prawdopodobieństwem postrzeganym w inżynierii jako warunek idealny. Przy niewystarczającej wielkości badanej próby i niskiej dokładności danych testowych, niezawodność systemu o hybrydowej niepewności trudno opisać w sposób dokładny. Biorąc pod uwagę fakt, że we współczesnym świecie wykorzystuje się duże ilości wysoce zintegrowanych urządzeń elektromechanicznych, niemożliwa jest alokacja wystarczających zasobów w celu wyeliminowania właściwości stochastycznych każdego elementu. Oznacza to, że aby zredukować niedokładność, konieczna jest identyfikacja komponentów o wysokiej czułości. Dlatego też popularnym przedmiotem badań ostatniej dekady stała się niedokładna analiza czułości, bazująca na teorii niedokładnego prawdopodobieństwa. W artykule zaproponowano metodę analizy niezawodności niepewnego systemu jak również niedokładnej analizy czułościowej w oparciu o sieć bayesowską, pole prawdopodobieństwa i metodę pinch point. Możliwość wykorzystania i dokładność metody zostały w pełni potwierdzone na podstawie przykładu liczbowego jak również studium przypadku systemu elektromechanicznego; proponowana metoda pozwoliła na poprawne określenie wysoce czułych elementów systemu, które w dużym stopniu wpływają na niedokładność danych wyjściowych układu.
When dealing with modern complex systems, the relationship existing between components can lead to the appearance of various dependencies between component failures, where multiple items of the system fail simultaneously in unpredictable fashions. These probabilistic common cause failures affect greatly the performance of these critical systems. In this paper a novel methodology is developed to quantify the importance of common cause failures when hybrid uncertainties are presented in systems. First, the probabilistic common cause failures are modeled with Bayesian networks and are incorporated into the system exploiting the α factor model. Then, probability-boxes (bound analysis method) are introduced to model the hybrid uncertainties and quantify the effect of uncertainties on system reliability. Furthermore, an extended Birnbaum importance measure is defined to identify the critical common cause failure events and coupling impact factors when uncertainties are expressed by probability-boxes. Finally, the effectiveness of the method is demonstrated through a numerical example.
PL
W przypadku nowoczesnych systemów złożonych, relacje zachodzące między komponentami mogą prowadzić do pojawienia się różnych zależności między ich uszkodzeniami, a tym samym do sytuacji w których kilka składowych systemu ulega uszkodzeniu jednocześnie w nieprzewidywalny sposób. Tego typu probabilistyczne uszkodzenia wywołane wspólną przyczyną (PCCF) mają ogromny wpływ na wydajność tych kluczowych systemów. W przedstawionym artykule opracowano nową metodę szacowania ważności PCFF w sytuacjach, gdy w systemie występują niepewności hybrydowe. W pierwszej kolejności, PCFF zamodelowano za pomocą sieci bayesowskich i włączono do systemu wykorzystującego model współczynnika α. Następnie, wprowadzono przedziały prawdopodobieństwa, tzw. probability boxes (bound analysis method), w celu zamodelowania niepewności hybrydowych i kwantyfikacji wpływu tych niepewności na niezawodność systemu. Ponadto zdefiniowano rozszerzoną miarę ważności Birnbauma, która pozwala zidentyfikować krytyczne zdarzenia PCCF oraz czynniki, które je wywołały, w przypadkach, gdy niepewności wyrażone są za pomocą probability boxes. Skuteczność metody wykazano na przykładzie numerycznym.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.