Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A source of pure silicon was added into an alloy refining system during a refining process with the application of a direct electric current. The effect of the temperature difference between the graphite electrodes and the alloy was decreased. The temperature increase value (ΔT) of the Al-28.51wt.%Si alloy sample caused by Joule heating was calculated by weighing the mass of primary silicon. When the current density was 5.0×105A/m2, the overall temperature increase in the alloy was about 90°C regardless of the alloy composition. Adequate silicon atoms recorded the footprint of the electric current in the alloy melt. The flow convection generated by the electric current in the melt during the solidification process resulted in the refinement of primary silicon. The Fe impurity content in alloy refining without the electric current density was 2.16 ppm. However, it decreased to 1.27 ppmw with the application of an electric current density of 5.0×105A/m2.
EN
Temperature gradient zone melting (TGZM) method was used to obtain bulk Si continuously for the efficient separation and purification of primary Si from the Si-Al alloy in this work. The effects of alloy thickness, temperature gradient and holding time in TGZM purification technology were investigated. Finally, the continuous growth of bulk Si without eutectic inclusions was obtained. The results showed that the growth rate of bulk Si was independent of the liquid zone thickness. When the temperature gradient was changed from 2.48 K/mm to 3.97 K/mm, the growth rate of bulk Si was enhanced from 7.9×10-5 mm/s to 2.47×10-4 mm/s, which was increased by about 3 times. The bulk Si could grow continuously and the growth rate was decreased with the increase of holding time from 1 h to 5 h. Meanwhile, low refining temperature was beneficial to the removal of impurities. With a precipitation temperature of 1460 K and a temperature gradient of 2.48 K/mm, the removal rates of Fe, P and B were 99.8%, 94.0% and 63.6%, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.