Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Geographical origin and environmental factors have a significant impact on the constituents and the biological properties of medicinal and aromatic plants. Herein, the Inula viscosaplant grown in El Menzel – Morocco were investigated with a focus on the impact of geographical province and solvent type on the mass yield and the biological activities of plant extracts. Chemical composition was characterized by gas chromatography/mass spectrometry (GC/MS). Antimicrobial activity was determined using the disk diffusion method and the microdilution test against eight clinical fungal, Gram-positive and Gram-negative bacterial isolates. The chemical composition results showed that the plant has good nutritional quality in terms of protein, carbohydrates, lipids and dietary fiber. In fact, alkaloids and saponisides are the most predominant chemical compounds in Inula vuscosa. Meanwhile, eighty volatile compounds were identified, representing 95% of the total essential oil content, the main component of which is tetra-pentacontane (11.26%). Furthermore, results showed high antioxidant activity, with efficacy increasing in the order: essential oil > chloroform extract > ethereal extract > ethanolic extract. In addition, both chloroformic extract and essential oil demonstrated significant antibacterial activity against all strains tested. This study highlights the influence of geographical variations and extraction solvents on the bioactivity of Inula viscosa, offering insights into its potential applications in pharmacology and nutraceuticals.
EN
Forestry waste (FW) extracted parts ofmedicinal-aromatic plant waste (EPW) and unused parts (UPW) are considered potential resources for energy recovery (their heating value of approximately 19 MJ/kg).In order to valorize lignocellulosic biomass, a pretreatment process is required to hydrolyze the recalcitrant lignocellulosic complex into fermentable simple sugars. The aim of this study is to determine the best method of pretreatment that takes into account treatment time, efficiency, and environmental friendliness. The mixture of FW, EPW, and UPW was treated by simple and combined treatment using different methods like acid sulfuric (Ac), steam explosion (SE), and enzymatic (E) (cellulase and hemicellulase).The results showed that the combined and simple Ac treatments are the mostefficient compared with SE and E treatments in the hydrolysis of polysaccharide of cellulose with a rate respectively of 90.5% and 77.6% and hemicellulose with a rate respectively of 80.63% and 87.14%. In addition, both of the preceding methods release an important rate of total phenolic compounds. Combined treatment demands high time but is friendly (approximately 1 day), and Ac treatment is less time-consuming (about 25 min) but harmful to the environment and causes the corrosion of equipment.In conclusion, combined treatment can be the best method and the high time required can be reduced with the progress of the research.
EN
In this study, the effectiveness of using natural bio-coagulants and bio-flocculants to treat textile wastewater through the coagulation-flocculation method was examined. These bio-based agents have several advantages over chemical agents, including biodegradability, natural abundance, low toxicity, and low cost. A bio-coagulant (holm oak acorn (HOA)) and a bio-flocculant (cactus juice) were used to investigate the capacity for turbidity removal and decolorization of textile wastewater. The UV spectrophotometer was used to characterize the discharges before and after treatment, and the chemical oxygen demand (COD) and biological oxygen demand (BOD5) levels were calculated. Box-Behnken design (BBD) coupled with response surface methodology (RSM) were utilized to optimize the process and reduce turbidity and decolorization in textile wastewater. The obtained results show that under the optimal conditions (0.5 g·L-1 of HOA, 15 mL·L-1 of cactus juice, and a pH of 7), decolorization and turbidity removal were achieved at 69% and 90%, respectively. This study demonstrates the potential of using bio-coagulants and bio-flocculants in the treatment of textile wastewater.
EN
Similar to countries with arid and semi-arid climates, Morocco faces problems of degradation of the quality of its environment and more specifically the quality of groundwater. In this work, we approached the physico-chemical characterization of the raw effluents of three industrial units in Fez city, namely the textile industry (U1), the copperware industry (U2), olive oil industry (U3) chosen for their degree of pollution and their environmental impact,the aim of which is to highlight the degree and nature of the pollution generated by these effluents, and their biodegradability during the winter period January to February of 2018, when the waste water treatment plant (WWTP) is malfunctioning. A set of samplings and measurements of different physico-chemical pollution parameters were carried out such as: temperature, pH, electrical conductivity, turbidity, salinity, chlorides, BOD5, COD, suspended solids (SS), Ca2+, K+, as well as heavy metals. The results show that the U3 effluent is highly loaded in organic matter with high COD (37600 mg O2/L) and BOD5 (13000 mg O2/L), while the U2 effluent contains very high concentrations of heavy metals (Pb, Ni, Zn, Cu, Cd) 91,8, 71, 55,4, 53, 28 mg/L, respectively. on the other hand, the U1 effluent is characterized by high SS contents, and concentrations of Ca2+, K+ exceed Moroccan standards. The COD/BOD5 ratio shows that U1and U2 effluents are difficult to biodegrade even if their organic loads are low. In the light of these results, it is recommended that these discharges be pre-treated before they are discharged into the liquid sewer system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.