Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present work proposes several pre-injection patterns to reduce nitrogen oxides in the Wartsila 6L 46 marine engine. A numerical model was carried out to characterise the emissions and consumption of the engine. Several pre-injection quantities, durations, and starting instants were analysed. It was found that oxides of nitrogen can be noticeably reduced but at the expense of increasing consumption as well as other emissions such as carbon monoxide and hydrocarbons. According to this, a multiple-criteria decision-making (MCDM) model was established to select the most appropriate parameters. Besides, an artificial neural network (ANN) was developed to complement the results and analyse a huge quantity of alternatives. This hybrid MCDM-ANN methodology proposed in the present work constitutes a useful tool to design new marine engines.
EN
The current restrictions on emissions from marine engines, particularly sulphur oxides (SOx ), nitrogen oxides (NOx ) and carbon dioxide (CO2 ), are compelling the shipping industry to a change of tendency. In the recent years, many primary and secondary reduction techniques have been proposed and employed in marine engines. Nevertheless, the increasingly restrictive legislation makes it very difficult to continue developing efficient reduction procedures at competitive prices. According to this, the paper presents the possibility to employ alternative fuels. A numerical model was developed to analyze the combustion process and emissions using oil fuel, natural gas and hydrogen. A commercial marine engine was studied, the Wartsila 6L 46. It was found, that hydrogen is the cleanest fuel regarding CO2 , hydrocarbons (HC) and carbon monoxide (CO). Nevertheless, it is very expensive for marine applications. Natural gas is cheaper and cleaner than fuel oil regarding CO2 and CO emissions. Still, natural gas emits more NOx and HC than oil fuel. SOx depends basically on the sulphur content of each particular fuel.
EN
The aim of the present paper is to develop a computational fluid dynamics (CFD) analysis to study the combustion process in a four-stroke marine diesel engine, the Wärtsilä 6L 46. The motivation comes from the importance of emissions from marine engines in the global emissions, particularly for nitrogen oxides (NOx) and sulfur oxides (SOx). The pressure and temperature fields were obtained, as well as the exhaust gas composition. In order to validate this work, the numerical results were satisfactory compared with experimental ones, which indicates that this model is accurate enough to reproduce the fluid pattern inside the cylinder during the combustion process. Accordingly, the aim of future works is to use this numerical procedure to optimize the performance and reduce the emissions of the new marine engine designs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.