Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present research work involves the study of the 3-D surface microtexture of sputtered indium tin oxide (ITO) prepared on glass substrates by DC magnetron at room temperature. The samples were annealed at 450°C in air and were distributed into five groups, dependent on ambient combinations applied, as follows: I group, using argon (Ar); II group, using argon with oxygen (Ar+O2); III group, using argon with oxygen and nitrogen (Ar+O2+N2); IV group, using argon with oxygen and hydrogen (Ar+O2+H2); and V group, using argon with oxygen, nitrogen, and hydrogen (Ar+O2+N2+H2). The characterization of the ITO thin film surface microtexture was carried out by atomic force microscopy (AFM). The AFM images were stereometrically quantitatively analyzed to obtain statistical parameters, by ISO 25178-2: 2012 and ASME B46.1-2009. The results have shown that the 3-D surface microtexture parameters change in accordance with different fabrication ambient combinations.
EN
A nanoscale investigation of three-dimensional (3-D) surface micromorphology of archetypical N, N0- bis (n-etyl) x:y, dicyanoperylene- 3, 4:9, 10 bis (dicarboximide) (PDI8-CN2) thin films on H-Si substrates, which are applicable in n-type semiconducting compounds, has been performed by using fractal analysis. In addition, surface texture characteristics of the PDI8-CN2 thin films have been characterized by using atomic force microscopy (AFM) operated in tapping-mode in the air. These analyses revealed that all samples can be described well as fractal structures at nanometer scale and their three dimensional surface texture could be implemented in both graphical models and computer simulations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.