Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Nowadays, Fused Deposition Modeling (FDM) is a powerful tool for manufacturing complex components, due to its customizability, low cost, accessibility, and fast prototyping time. It is an alternative for creating thin-walled structures, as it allows for novel designs. This article focuses on the design and numerical evaluation of 3D printed sandwich structures for energy absorption applications. For this purpose, five structures of Acrylonitrile Butadiene Styrene (ABS) were designed. To ensure optimal performance, the 3D printing parameters were optimized based on the corresponding literature. The structures had cores based on polygonal and cell arrangements. The effects of cross-section and mass on energy absorption were analyzed, and parameters such as energy absorption, peak load, mean force, and crush force efficiency (CFE) were determined during the study. The structures were assessed by out-of-plane compression tests. The numerical analysis was executed using Abaqus finite element software. Results showed that the energy absorption performance is primarily determined by the geometry and density of the structures. The best performance was found for a circular cellular structure, with a CFE of 0.884.
EN
The manufacturing of machine parts with additive methods (AM) is of significant importance in modern industry. The development of 3D printers and all 3D printing technology is impressive. The ability to make parts quickly and relatively cheaply with AM gives excellent opportunities in terms of e.g., shortening the production preparation time. Proper selection of printing parameters allows for a significant reduction of printing time and production costs. Unfortunately, this has different consequences. Due to the course of the printing process and the parameters that can be set, the same product produced with different parameters has different mechanical properties - mainly different strength. This paper presents the impact of 3D printing parameters on the strength of manufactured parts. Strength tests were carried out on samples made in accordance with DIN EN ISO 527-1:2019. The samples were printed in technology FDM from three different materials, i.e. PLA (completely biodegradable), PETG (recycled material), and Smart ABS (material with minimal shrinkage). The tested samples were made in three levels of print filling - 10%, 30%, and 60% and with different types of filling - line, mesh, and honeycomb. A series of static tensile tests were carried out to determine the strength of the samples produced with different printing parameters. Thanks to the obtained test results, it is possible to select the optimal printing parameters depending on the forecast load of the manufactured parts.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.