Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents an analytical study of a steady boundary layer visco-elastic liquid flow over a non-isothermal stretching sheet embedded in a porous medium in the presence of non-uniform heat generation / absorption. The stretching of the sheet is assumed to be proportional to the perpendicular distance from the slit. Two different temperature conditions are considered, viz., (i) the sheet with a prescribed surface temperature (PST) and (ii) the sheet with a prescribed wall heat flux (PHF). The non-linear boundary layer equations for momentum are converted into non-linear ordinary differential equations by means of a similarity transformation and the same is solved exactly. The heat transport equation with variable coefficients is transformed into a confluent hypergeometric differential equation and solved analytically. The effect of various parameters on the temperature distribution is presented graphically. The numerical calculations have been carried out for various values of non-dimensional physical parameters, the results tabulated the results and discussed.
EN
A theoretical study of heat transfer in a visco-elastic liquid flow due to a stretching sheet in the presence of non-uniform heat generation / absorption is investigated. The stretching of the sheet is assumed to be proportional to the perpendicular distance from the slit. Two different temperature conditions are studied, viz., (i) the sheet with the prescribed surface temperature (PST) and (ii) the sheet with the prescribed wall heat flux (PHF). The non-linear boundary layer equations for momentum are converted into non-linear ordinary differential equations by means of a similarity transformation and the same is solved exactly. The heat transport equation with variable coefficients is transformed into a confluent hypergeometric differential equation and solved analytically. The effect of various parameters on the temperature distribution is presented graphically. Present results are compared with the existing theoretical data and found in good agreement with these results. The results have technological applications in liquid based systems involving stretchable materials.
EN
This paper presents the influences of space and temperature dependent fluid properties on the hydromagnetic boundary layer flow of a viscoelastic liquid and heat transfer over a continuously stretching sheet, with variable thermal conductivity, in the presence of a space and temperature dependent heat source/sink. The thermal conductivity is assumed to vary as a linear function of temperature. A suitable similarity transformation is used in order to convert the flow and heat transfer governing partial differential equations into a set of highly non-linear ordinary differential equations. Solutions of heat transfer equation are obtained numerically, by the shooting technique with fourth order Runge Kutta method. The parametric analysis has been presented to study the effect of various parameters like the magnetic parameter, non-Newtonian Prandtl number, non-uniform heat source/sink parameters, temperature parameter and the variable thermal conductivity parameters for two different surface conditions namely, i) a surface with a prescribed wall temperature ii) a surface with a prescribed wall heat flux. The findings are shown graphically and are discussed. The heat transfer coefficients are also tabulated for various values of the said parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.