Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The light scattering process can be modeled mathematically using the Fredholm integral equation. This equation is usually solved after its discretization and transformation into the system of algebraic equations. Volume integral equations can be also solved without discretization using the Monte Carlo algorithm, but its application to the light scattering simulations has not been sufficiently studied. Here we present the implementation of this algorithm for one and three-dimensional light scattering computations and discuss its applicability in this field. We show that the Monte Carlo algorithm can provide valid and accurate results but, due to its convergence properties, it might be difficult to apply for problems with large volumes or refractive indices of scattering objects.
EN
Various numerical methods were proposed for analysis of the light scattering phenomenon. An important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation. Discrete dipole approximation uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo algorithm as one of them was proposed. In this research, we analyze the application of the Monte Carlo algorithm for two cases: the light scattering by large particles and by random conglomerates of small particles. We show that if proper preconditioning of the numerical problem is applied, the Monte Carlo algorithm can solve the underlying systems of linear equations. We also show that the efficiency of the Monte Carlo algorithm can be increased by reusing performed computations for various incident electromagnetic waves and the applicability of the Monte Carlo algorithm depends on the particular use case. It is unlikely to be used in the case of light scattering by the large particles due to computational times inferior comparing with the other numerical methods but may become useful in the case of light scattering by the random conglomerates of small scattering particles.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.