Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary) in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.
EN
The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.